对语音波段样本批量加噪声处理 keras
时间: 2024-01-21 19:04:33 浏览: 61
语音加噪处理
语音波段的样本批量加噪声处理,可以使用Keras中的函数式API来实现。具体步骤如下:
1. 导入需要的库和模块:
```
import numpy as np
import librosa
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, Conv1D, Dropout
```
2. 加载语音波段样本数据:
```
# 读取语音样本数据
data, sr = librosa.load('sample.wav', sr=None)
```
3. 定义添加噪声的函数:
```
# 添加噪声的函数
def add_noise(data, noise_factor):
# 生成噪声数据
noise = np.random.randn(len(data))
# 将噪声数据标准化
noise = noise / np.max(np.abs(noise))
# 设置噪声强度
noise = noise_factor * noise
# 添加噪声
data_noise = data + noise
return data_noise
```
4. 定义卷积神经网络模型:
```
# 定义卷积神经网络模型
inputs = Input(shape=(data.shape[0], 1))
x = Conv1D(filters=32, kernel_size=3, activation='relu', padding='same')(inputs)
x = Dropout(0.5)(x)
x = Conv1D(filters=64, kernel_size=3, activation='relu', padding='same')(x)
x = Dropout(0.5)(x)
x = Conv1D(filters=128, kernel_size=3, activation='relu', padding='same')(x)
x = Dropout(0.5)(x)
outputs = Conv1D(filters=1, kernel_size=3, activation='linear', padding='same')(x)
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='mse')
```
5. 批量添加噪声并训练模型:
```
# 批量添加噪声并训练模型
data_batch = []
noise_factor = 0.1
batch_size = 32
epochs = 10
for i in range(0, len(data), batch_size):
# 取出一个批次的数据
data_batch = data[i:i+batch_size]
# 添加噪声
data_noisy = add_noise(data_batch, noise_factor)
# 调整数据维度
data_noisy = np.expand_dims(data_noisy, axis=-1)
data_batch = np.expand_dims(data_batch, axis=-1)
# 训练模型
model.fit(data_noisy, data_batch, batch_size=batch_size, epochs=epochs)
```
6. 测试模型效果:
```
# 测试模型效果
data_test = data[1000:1100]
data_test_noisy = add_noise(data_test, noise_factor)
data_test_noisy = np.expand_dims(data_test_noisy, axis=-1)
data_pred = model.predict(data_test_noisy)
plt.plot(data_test, label='Original')
plt.plot(data_test_noisy, label='Noisy')
plt.plot(data_pred, label='Denoised')
plt.legend()
plt.show()
```
通过以上步骤,可以对语音波段样本批量加噪声处理并训练一个卷积神经网络模型,从而实现语音信号去噪。
阅读全文