yolov5代码注释
时间: 2023-08-16 09:10:58 浏览: 111
yolov5源码注释参考.tar.gz
以下是YOLOv5代码注释的示例:
```python
import torch
from models.common import Conv
from utils.general import check_file
# 定义YOLOv5的主要网络结构
class YOLOv5(torch.nn.Module):
def __init__(self):
super(YOLOv5, self).__init__()
# 用于处理输入图像的卷积层
self.conv1 = Conv(3, 32, kernel_size=3, stride=1)
# 下采样模块
self.downsample1 = Conv(32, 64, kernel_size=3, stride=2)
self.downsample2 = Conv(64, 128, kernel_size=3, stride=2)
# 中间卷积模块
self.conv2 = Conv(128, 64, kernel_size=1, stride=1)
self.conv3 = Conv(64, 128, kernel_size=3, stride=1)
# 上采样模块
self.upsample1 = Conv(128, 64, kernel_size=1, stride=1)
self.upsample2 = Conv(64, 32, kernel_size=1, stride=1)
# 输出层,用于预测目标的位置和类别
self.output = Conv(32, num_classes + 5 * num_anchors, kernel_size=1, stride=1)
def forward(self, x):
x = self.conv1(x)
x = self.downsample1(x)
x = self.downsample2(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.upsample1(x)
x = self.upsample2(x)
x = self.output(x)
return x
# 加载预训练模型
def load_model(model, path):
# 检查模型文件是否存在
check_file(path)
# 加载模型参数
model.load_state_dict(torch.load(path))
# 创建YOLOv5的实例
model = YOLOv5()
# 加载预训练模型权重
load_model(model, 'yolov5s.pt')
```
这是YOLOv5的简化版本代码注释,用于解释主要的网络结构和加载预训练模型的过程。根据实际需要,代码中可能还有其他的功能和模块。
阅读全文