yolov5的代码注释
时间: 2023-09-07 22:14:19 浏览: 89
以下是YOLOv5的代码注释示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class YOLOv5(nn.Module):
def __init__(self, num_classes=80):
super(YOLOv5, self).__init__()
# 初始化网络结构
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv5 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1)
# 其他网络层...
# 最后的卷积层输出
self.final_conv = nn.Conv2d(1024, num_classes, kernel_size=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x = F.relu(self.conv6(x))
# 其他网络层的前向传播...
x = self.final_conv(x)
return x
```
以上是一个简化的YOLOv5模型的代码注释示例。具体的代码内容会根据实际情况有所变化,这里只是提供了一个基本的框架。
阅读全文