梯度提升决策树python
时间: 2023-11-16 22:00:30 浏览: 143
python实现决策树
梯度提升决策树(Gradient Boosting Decision Tree, GBDT)是一种常用的机器学习算法,它是一种集成学习算法,通过将多个决策树组合起来进行预测,可以有效地提高模型的准确率。在Python中,可以使用sklearn库中的GradientBoostingClassifier和GradientBoostingRegressor类来实现GBDT算法。其中,feature_importances_属性可以用来计算特征的重要性,具体计算方法如下:
<<引用>>
除此之外,还可以通过调整参数来优化模型的性能,例如n_estimators表示使用的决策树数量,learning_rate表示每个决策树的权重缩减系数等。更多详细信息可以参考sklearn官方文档。
<<引用>>
阅读全文