手写cv2.findContours

时间: 2023-11-11 18:57:49 浏览: 43
cv2.findContours函数用于在图像中查找轮廓。它接受一个二值化图像作为输入,并返回一组轮廓的坐标。 函数的语法如下: contours, hierarchy = cv2.findContours(image, mode, method) 参数说明: - image:输入的二值化图像,通常为灰度图像或二值图像。 - mode:轮廓检索模式。有四种模式可选: - cv2.RETR_EXTERNAL:只检测外部轮廓。 - cv2.RETR_LIST:检测所有轮廓并存储在列表中。 - cv2.RETR_CCOMP:检测所有轮廓并将它们组织为两级层次结构。 - cv2.RETR_TREE:检测所有轮廓并完整地组织为层次结构。 - method:轮廓逼近方法。有三种方法可选: - cv2.CHAIN_APPROX_NONE:保存所有的轮廓点。 - cv2.CHAIN_APPROX_SIMPLE:仅保存水平、垂直和对角线转折点,压缩水平、垂直和斜线段,即对具有相同颜色的连续部分只保留起点和终点。 - cv2.CHAIN_APPROX_TC89_L1和cv2.CHAIN_APPROX_TC89_KCOS:应用Teh-Chin链逼近算法。 返回值: - contours:检测到的轮廓,每个轮廓是一个点的列表。 - hierarchy:轮廓的层次结构信息。
相关问题

import cv2 from skimage.feature import hog from sklearn.neighbors import KNeighborsClassifier import joblib import numpy as np # 加载已经训练好的分类器 model_location = "C:/Users/27745/数字图像处理/knn.pkl" knn = joblib.load(model_location) def predict_digit(image): #获取一幅手写数字图像的输入,返回预测结果 # 将图像转换为灰度图 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 应用高斯模糊和大津二值化来预处理图像 blur = cv2.GaussianBlur(gray, (5, 5), 0) _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) # Find the contours and sort them largest-to-smallest contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours = sorted(contours, key=lambda ctr: cv2.boundingRect(ctr)[0]) # 提取每个字符的 ROI 并使用 HOG 特征提取方法进行特征提取 features = [] for cnt in contours: (x, y, w, h) = cv2.boundingRect(cnt) # 添加一定的边框,避免过小的ROI被压缩过多而失去特征 border_size = 20 roi = thresh[max(y - border_size, 0):min(y + h + border_size, image.shape[0]), max(x - border_size, 0):min(x + w + border_size, image.shape[1])] # 将ROI调整为28x28大小,并根据特征提取器生成的HOG描述符提取特征 resized_roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA) fd = hog(resized_roi, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2-Hys') features.append(fd.reshape(-1, 1)) # 将提取的特征向量输入KNN模型进行预测 results = knn.predict(np.hstack(features)) # 返回数字串预测结果 return ''.join(str(result) for result in results) # 载入测试图片并进行预测 image_name = "C:/Users/27745/Desktop/test1.png" image = cv2.imread(image_name) # 将目标图像统一调整为相同的大小 image = cv2.resize(image, (300, 300)) # 利用封装的函数进行预测 result = predict_digit(image) print("The number is:", result)以上代码出现了X has 216 features, but KNeighborsClassifier is expecting 784 features as input.的问题,请帮我更正

这个错误是因为在特征提取时,使用的HOG特征提取方法生成的特征向量维度不正确。 在代码中,我们将每个字符的ROI调整为28x28大小,并使用HOG特征提取方法生成的特征向量进行特征提取,但是在生成特征向量时,我们使用了`reshape(-1,1)`将特征向量转换为列向量,这导致特征向量的维度不正确。 要解决这个问题,我们需要使用`reshape(1,-1)`将特征向量转换为行向量,这样就可以将特征向量的维度调整为784,与KNN模型期望的输入维度相匹配。 修改代码如下: ```python # 将ROI调整为28x28大小,并根据特征提取器生成的HOG描述符提取特征 resized_roi = cv2.resize(roi, (28, 28), interpolation=cv2.INTER_AREA) fd = hog(resized_roi, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2-Hys') features.append(fd.reshape(1, -1)) # 将特征向量转换为行向量 ``` 这样就可以解决这个问题了。

from tkinter import * import cv2 import numpy as np from PIL import ImageGrab from tensorflow.keras.models import load_model from temp import * model = load_model('mnist.h5') image_folder = "img/" root = Tk() root.resizable(0, 0) root.title("HDR") lastx, lasty = None, None image_number = 0 cv = Canvas(root, width=1200, height=480, bg='white') cv.grid(row=0, column=0, pady=2, sticky=W, columnspan=2) def clear_widget(): global cv cv.delete('all') def draw_lines(event): global lastx, lasty x, y = event.x, event.y cv.create_line((lastx, lasty, x, y), width=8, fill='black', capstyle=ROUND, smooth=True, splinesteps=12) lastx, lasty = x, y def activate_event(event): global lastx, lasty cv.bind('<B1-Motion>', draw_lines) lastx, lasty = event.x, event.y cv.bind('<Button-1>', activate_event) def Recognize_Digit(): global image_number filename = f'img_{image_number}.png' root.update() widget = cv x = root.winfo_rootx() + widget.winfo_rootx() y = root.winfo_rooty() + widget.winfo_rooty() x1 = x + widget.winfo_width() y1 = y + widget.winfo_height() print(x, y, x1, y1) # get image and save ImageGrab.grab().crop((x, y, x1, y1)).save(image_folder + filename) image = cv2.imread(image_folder + filename, cv2.IMREAD_COLOR) gray = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2GRAY) ret, th = cv2.threshold( gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) # contours = cv2.findContours( # th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] Position = findContours(th) for m in range(len(Position)): # make a rectangle box around each curve cv2.rectangle(th, (Position[m][0], Position[m][1]), ( Position[m][2], Position[m][3]), (255, 0, 0), 1) # Cropping out the digit from the image corresponding to the current contours in the for loop digit = th[Position[m][1]:Position[m] [3], Position[m][0]:Position[m][2]] # Resizing that digit to (18, 18) resized_digit = cv2.resize(digit, (18, 18)) # Padding the digit with 5 pixels of black color (zeros) in each side to finally produce the image of (28, 28) padded_digit = np.pad(resized_digit, ((5, 5), (5, 5)), "constant", constant_values=0) digit = padded_digit.reshape(1, 28, 28, 1) digit = digit / 255.0 pred = model.predict([digit])[0] final_pred = np.argmax(pred) data = str(final_pred) + ' ' + str(int(max(pred) * 100)) + '%' print(data) font = cv2.FONT_HERSHEY_SIMPLEX fontScale = 0.5 color = (255, 0, 0) thickness = 1 cv2.putText(th, data, (Position[m][0], Position[m][1] - 5), font, fontScale, color, thickness) cv2.imshow('image', th) cv2.waitKey(0) cv2.destroyAllWindows() btn_save = Button(text='Recognize Digit', command=Recognize_Digit) btn_save.grid(row=2, column=0, pady=1, padx=1) button_clear = Button(text='Clear Widget', command=clear_widget) button_clear.grid(row=2, column=1, pady=1, padx=1) root.mainloop()

这段代码是一个Python程序,用于画图并识别手写数字。它调用了许多库,如tkinter、cv2、numpy、PIL和tensorflow。程序创建了一个图形用户界面,包括一个白色的画布和一个按钮。用户在画布上绘制数字后,可以点击按钮来触发识别数字的功能。程序会将绘制的数字保存为图片文件,并加载训练好的模型(mnist.h5)来识别数字。程序最后打印出保存的图片文件的坐标信息。

相关推荐

最新推荐

recommend-type

HTML+CSS制作的个人博客网页.zip

如标题所述,内有详细说明
recommend-type

基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位+使用说明文档

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位;对比解析法和数值法的异同点;选取一点,绘制收敛曲线;总的三维电位图+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

gara.ttf,字体下载

gara.ttf字体下载
recommend-type

Java_Termux是Android操作系统的终端仿真应用程序,可通过各种包进行扩展.zip

Java_Termux是Android操作系统的终端仿真应用程序,可通过各种包进行扩展
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。