bar.render_notebook()怎么用
时间: 2024-01-22 19:03:08 浏览: 123
bar.render_notebook()是用于在Jupyter Notebook中显示Bokeh图表的方法。
下面是一个简单的示例代码:
```
from bokeh.plotting import figure, show
from bokeh.io import output_notebook
from bokeh.models import ColumnDataSource
output_notebook()
# 创建数据源
source = ColumnDataSource(data=dict(x=[1, 2, 3, 4], y=[2, 4, 6, 8]))
# 创建图表
p = figure(plot_width=400, plot_height=400)
p.line('x', 'y', source=source, line_width=2)
# 在Notebook中显示图表
show(p)
```
在上面的代码中,我们首先使用`output_notebook()`方法启用Notebook输出。然后,我们创建了一个数据源和一个简单的折线图,并使用`show()`方法在Notebook中显示图表。
如果我们想要使用`bar.render_notebook()`方法来显示图表,我们只需要将最后一行改为:
```
bar.render_notebook()
```
这将会将图表以HTML格式嵌入到Notebook中,并在Notebook中显示。
相关问题
from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.globals import ThemeType net_data=data1.query('Country=="Netherlands" and Quantity>0').groupby(data1['InvoiceDate'] .dt.strftime('%Y-%m'))['Price'].sum().reset_index() eire_data=data1.query('Country=="EIRE" and Quantity>0').groupby(data1['InvoiceDate'] .dt.strftime('%Y-%m'))['Price'].sum().reset_index() bar = ( Bar(init_opts=opts.InitOpts(width='1000px',height='600px')) .add_xaxis(list(net_data['InvoiceDate'])) .add_yaxis("荷兰", list(net_data['Price'])) .add_yaxis("爱尔兰", list(eire_data['Price'])) .set_global_opts(title_opts=opts.TitleOpts(title="荷兰与爱尔兰每月销售情况对比"),toolbox_opts=opts.ToolboxOpts()) .set_series_opts(markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_='average',name='平均值')])) .set_series_opts(markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_='max',name='最大值') ,opts.MarkPointItem(type_='min',name='最小值')])) ) bar.render_notebook()加上注释
好的,这段代码使用 pyecharts 库绘制了荷兰与爱尔兰每月销售情况的对比柱状图。
```python
# 从数据集中选出荷兰每月销售额数据
net_data = data1.query('Country=="Netherlands" and Quantity>0').groupby(data1['InvoiceDate'].dt.strftime('%Y-%m'))['Price'].sum().reset_index()
# 从数据集中选出爱尔兰每月销售额数据
eire_data = data1.query('Country=="EIRE" and Quantity>0').groupby(data1['InvoiceDate'].dt.strftime('%Y-%m'))['Price'].sum().reset_index()
# 创建柱状图,设置宽度和高度
bar = (
Bar(init_opts=opts.InitOpts(width='1000px',height='600px'))
# 添加x轴数据和两个y轴数据
.add_xaxis(list(net_data['InvoiceDate']))
.add_yaxis("荷兰", list(net_data['Price']))
.add_yaxis("爱尔兰", list(eire_data['Price']))
# 设置全局选项,包括标题和工具箱
.set_global_opts(title_opts=opts.TitleOpts(title="荷兰与爱尔兰每月销售情况对比"),toolbox_opts=opts.ToolboxOpts())
# 设置系列选项,包括标记线和标记点
.set_series_opts(markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_='average',name='平均值')]))
.set_series_opts(markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_='max',name='最大值')
,opts.MarkPointItem(type_='min',name='最小值')]))
)
# 在notebook中渲染柱状图
bar.render_notebook()
```
该代码通过对数据集的筛选和分组,获得荷兰和爱尔兰每月的销售额数据,并使用 pyecharts 库创建柱状图。图表中展示了荷兰和爱尔兰每月的销售额情况,并标出了平均值、最大值和最小值。
import pandas as pd beijing_daname=['朝阳区', '丰台区', '海淀区', '大兴区', '通州区', '昌平区', '东城区', '西城区', '顺义区'] data=pd.read_csv('D:\pbl2\租房价格地图\租房数据加经纬度.csv',encoding='gbk') areas=list(set(list(data['行政区']))) area_sums={} for area in areas: area_sums[area]=list(data['行政区']).count(area) from pyecharts import options as opts from pyecharts.charts import Bar import random hotel_num=[area_sums[i] for i in beijing_daname] bar = ( Bar() .add_xaxis(beijing_daname) .add_yaxis("", hotel_num) .set_global_opts(title_opts=opts.TitleOpts(title="北京各区房源数量")) .set_series_opts( label_opts=opts.LabelOpts(is_show=True), markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_="min", name="最小值"), opts.MarkLineItem(type_="max", name="最大值"), opts.MarkLineItem(type_="average", name="平均值"), ] ), ) ) bar.render_notebook()出不了图
在 Jupyter notebook 中使用 pyecharts 绘图时,需要在代码最后添加 `render_notebook()` 来显示图像。您可以将代码最后一行改为 `bar.render_notebook()`,然后再次运行即可。另外,如果您的数据集中有缺失值或异常值,可能会导致绘图出错。建议您先检查一下数据集中是否有问题。
阅读全文
相关推荐
















