用C、VB、C++或MATLAB语言编写空间后方交会程序(1)已知航摄仪内方位元素f=153.24mm,Xo=Yo=0。限差0.1秒 (2)已知4对点的影像坐标和地面坐标: 影像 坐标 地面坐标 x(mm) y(mm) X(m) Y(m) Z(m) 1 -86.15 -68.99 36589.41 25273.32 2195.17 2 -53.40 82.21 37631.08 31324.51 728.69 3 -14.78 -76.63 39100.97 24934.98 2386.50 4 10.46 64.43 40426.54 30319.81 757.31
时间: 2024-01-21 10:01:52 浏览: 176
C++编写的空间后方交会程序
以下是一个用MATLAB语言编写的空间后方交会程序的示例代码,可以根据给定的数据进行计算和精度评定。
```matlab
% 已知数据
f = 153.24; % 内方位元素
Xo = 0; % 内方位元素
Yo = 0; % 内方位元素
tolerance = 0.1; % 限差
% 影像坐标和地面坐标数据
image_coords = [-86.15 -68.99; -53.40 82.21; -14.78 -76.63; 10.46 64.43];
ground_coords = [36589.41 25273.32 2195.17; 37631.08 31324.51 728.69; 39100.97 24934.98 2386.50; 40426.54 30319.81 757.31];
% 计算外方位元素
[Xs, Ys, Zs, omega, phi, kappa] = space_resection(image_coords, ground_coords, f, Xo, Yo, tolerance);
% 输出结果
fprintf('外方位元素:\n');
fprintf('Xs = %.2f m, Ys = %.2f m, Zs = %.2f m, omega = %.2f deg, phi = %.2f deg, kappa = %.2f deg\n', Xs, Ys, Zs, rad2deg(omega), rad2deg(phi), rad2deg(kappa));
% 计算重心高程误差
e = check_point_error(image_coords, ground_coords, f, Xo, Yo, Xs, Ys, Zs, omega, phi, kappa);
fprintf('重心高程误差:%.2f m\n', e);
% 空间后方交会函数
function [Xs, Ys, Zs, omega, phi, kappa] = space_resection(image_coords, ground_coords, f, Xo, Yo, tolerance)
% 坐标转换
x = image_coords(:, 1) + Xo;
y = image_coords(:, 2) + Yo;
X = ground_coords(:, 1);
Y = ground_coords(:, 2);
Z = ground_coords(:, 3);
% 初始值
omega = 0;
phi = 0;
kappa = 0;
Xs = mean(X);
Ys = mean(Y);
Zs = mean(Z);
% 迭代计算
max_iter = 100;
iter = 0;
while iter < max_iter
% 计算法线方程系数矩阵
A = [];
for i = 1:length(x)
row = [X(i) Y(i) Z(i) 0 0 0 -x(i)*X(i) -x(i)*Y(i) -x(i)*Z(i) x(i)];
A = [A; row];
row = [0 0 0 X(i) Y(i) Z(i) -y(i)*X(i) -y(i)*Y(i) -y(i)*Z(i) y(i)];
A = [A; row];
end
% 计算误差向量
b = [];
for i = 1:length(x)
b = [b; x(i) - X(i)*cos(phi)*cos(kappa) - Y(i)*(cos(omega)*sin(kappa) - sin(omega)*sin(phi)*cos(kappa)) - Z(i)*(sin(omega)*sin(kappa) + cos(omega)*sin(phi)*cos(kappa))];
b = [b; y(i) - X(i)*cos(phi)*sin(kappa) - Y(i)*(cos(omega)*cos(kappa) + sin(omega)*sin(phi)*sin(kappa)) - Z(i)*(-sin(omega)*cos(kappa) + cos(omega)*sin(phi)*sin(kappa))];
end
% 解方程
dx = inv(A'*A)*A'*b;
% 更新外方位元素
Xs = Xs + dx(1);
Ys = Ys + dx(2);
Zs = Zs + dx(3);
omega = omega + dx(4);
phi = phi + dx(5);
kappa = kappa + dx(6);
% 判断是否满足限差要求
if max(abs(dx(1:3))) < tolerance && max(abs(rad2deg(dx(4:6)))) < tolerance
break;
end
iter = iter + 1;
end
end
% 计算重心高程误差函数
function e = check_point_error(image_coords, ground_coords, f, Xo, Yo, Xs, Ys, Zs, omega, phi, kappa)
% 坐标转换
x = image_coords(:, 1) + Xo;
y = image_coords(:, 2) + Yo;
X = ground_coords(:, 1);
Y = ground_coords(:, 2);
Z = ground_coords(:, 3);
% 计算重心高程
g = (Xs*cos(phi)*cos(kappa) + Ys*(cos(omega)*sin(kappa) - sin(omega)*sin(phi)*cos(kappa)) + Zs*(sin(omega)*sin(kappa) + cos(omega)*sin(phi)*cos(kappa))) / (cos(phi)*cos(kappa) + cos(omega)*sin(kappa)*sin(phi) + sin(omega)*sin(kappa)*cos(phi));
% 计算重心高程误差
e = mean(Z - g);
end
```
这段代码实现了空间后方交会的计算和精度评定,通过给定的影像坐标和地面坐标数据,计算出外方位元素和重心高程误差,并输出结果。
阅读全文