如果传送完11个数据段时出现超时,并采用慢开始算法,同样求(90ms~120ms)有多少个预期报文段(注意轮次,慢开始算法)

时间: 2024-01-15 12:02:30 浏览: 14
如果在传输11个数据段时出现超时,说明网络出现拥塞,需要进行拥塞控制。此时根据慢开始算法,需要将拥塞窗口大小降为1,重新开始传输。 在60ms时,拥塞窗口大小为1,因此在60ms~90ms间可以传输1个数据段。 在90ms时,拥塞窗口大小为2,因此在90ms~120ms间可以传输2个数据段。 因此,在90ms~120ms间预期可以传输的数据段数为2个。
相关问题

考虑一个RTT=20ms的TCP流。假设它已经超过阈值,在时间 t = 100ms与 t = 120ms 间传送10个数据段(没有超时)。流在t = 140ms和 t = 160ms之间传输的数据段预期有多少(假设在此阶段没有数据段丢失)? 2)如果上题中,传送完10个数据段时出现超时,并采用慢开始算法,同样求t=140ms和160ms之间有多少个预期报文段

对于第一个问题,根据TCP的拥塞控制算法,超过阈值之后,每经过一个RTT就会将拥塞窗口大小加1。因此,在t=140ms和t=160ms之间,经过了2个RTT,因此拥塞窗口大小应该增加了2个,也就是说预期有 2*10 = 20 个数据段传输。 对于第二个问题,如果传送完10个数据段时出现超时并采用慢开始算法,那么拥塞窗口大小会从之前的阈值开始重新增加。假设阈值是ssthresh,那么在超时之后,拥塞窗口大小会重新设置为1,每经过一个RTT就会将拥塞窗口大小加倍,直到达到ssthresh,之后就会按照拥塞避免算法进行增加。 因此,在t=100ms和t=120ms之间,传输了10个数据段,说明此时拥塞窗口大小为10,因此ssthresh应该为10/2=5。在超时之后,拥塞窗口大小会重新设置为1,然后在经过1个RTT之后,拥塞窗口大小会加倍为2,然后在经过1个RTT之后,拥塞窗口大小会加倍为4,此时还没有达到ssthresh,因此在t=140ms和t=160ms之间,预期有 4*2 = 8 个数据段传输。

H1和H2之间的RTT是30ms,在某一时刻开始计时,阈值为16, (30ms~ 60ms) 间传送11个数据段(没有超时)。(90ms~120ms)间传输的数据段预期有多少(假设在此阶段没有数据段丢失)?

根据题意可知,H1和H2之间的RTT是30ms,阈值为16,即拥塞窗口初始值为16个数据段。在30ms~60ms间传送11个数据段,说明拥塞窗口逐渐增大,因此数据段数目的增长速率为1个/RTT,即1个/30ms。 在60ms时,拥塞窗口大小为11+16=27,因此在60ms~90ms间可以传输27个数据段。 在90ms时,拥塞窗口大小为27*2=54,因此在90ms~120ms间可以传输54个数据段。 因此,在90ms~120ms间预期可以传输的数据段数为54个。

相关推荐

最新推荐

recommend-type

C++ 数据结构之kmp算法中的求Next()函数的算法

主要介绍了C++ 数据结构之kmp算法中的求Next()函数的算法的相关资料,需要的朋友可以参考下
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下
recommend-type

【K-means算法】{1} —— 使用Python实现K-means算法并处理Iris数据集

此处基于K-means算法处理Iris数据集 Kmeans.py模块: import numpy as np class KMeansClassifier(): """初始化KMeansClassifier类""" def __init__(self, k=3, initCent='random', max_iter=500): # 类的成员...
recommend-type

java数据结构与算法.pdf

包含了各种数据结构和算法(java)的实现方式和详解(图解),包括单双链表、环形链表(约瑟夫问题)、栈、后缀表达式、中缀表达式转后缀表达式、迷宫问题、八大排序算法、多种查找算法、哈希表、二叉树实现以及操作...
recommend-type

Spring MVC配置双数据源实现一个java项目同时连接两个数据库的方法

主要给大家介绍了关于Spring MVC如何配置双数据源实现一个java项目同时连接两个数据库的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。