货郎担算法和代码c++
时间: 2024-12-28 16:30:26 浏览: 9
货郎担算法,又称为旅行商问题(Traveling Salesman Problem,TSP),是一个经典的组合优化问题,它的目标是找到一条最短路径,使得一名“货郎”能够访问每个城市恰好一次并返回起点。这是一个NP完全问题,意味着没有已知的有效多项式时间解法可以解决所有规模的问题。
在C++中,解决货郎担问题通常采用启发式算法,如遗传算法、模拟退火算法或蚁群算法等近似求解方法。以下是简单的模拟退火算法的一个示例:
```cpp
#include <vector>
#include <cstdlib>
#include <ctime>
// 假设 cities 是一个二维向量,存储城市的坐标
std::vector<std::pair<int, int>> cities;
bool isSolutionBetter(std::vector<int>& tour, std::vector<int>& currentTour) {
int distance = calculateDistance(tour);
int current = calculateDistance(currentTour);
return distance < current;
}
void swapCities(int& i, int& j, std::vector<int>& tour) {
int temp = tour[i];
tour[i] = tour[j];
tour[j] = temp;
}
std::vector<int> simulatedAnnealing() {
// 初始化随机路线
std::vector<int> tour(cities.size());
for (int i = 0; i < cities.size(); ++i) {
tour[i] = i;
}
// 设置初始温度和冷却因子
double temperature = 100.0;
double coolingFactor = 0.95;
double acceptanceProbability;
while (temperature > 1e-6) {
// 随机选择两个城市交换位置
int i = rand() % cities.size();
int j = rand() % cities.size();
while (j == i) {
j = rand() % cities.size();
}
std::vector<int> newTour = tour;
swapCities(i, j, newTour);
if (isSolutionBetter(newTour, tour)) {
tour = newTour;
} else {
double costDifference = calculateDistance(tour) - calculateDistance(newTour);
acceptanceProbability = std::exp(-costDifference / temperature);
if (rand() / static_cast<double>(RAND_MAX) < acceptanceProbability) {
tour = newTour;
}
}
temperature *= coolingFactor;
}
return tour;
}
double calculateDistance(const std::vector<int>& tour) {
double total = 0;
for (size_t i = 0; i < tour.size() - 1; ++i) {
total += cities[tour[i]].first + cities[tour[i+1]].first;
total += cities[tour[i]].second + cities[tour[i+1]].second;
}
// 返回最后一个城市到第一个城市的距离
total += cities[tour.back()].first + cities[0].first;
total += cities[tour.back()].second + cities[0].second;
return total;
}
阅读全文