GCN-LSTM网络代码
时间: 2024-10-25 20:09:39 浏览: 13
GCN-LSTM网络结合了图卷积神经网络(GCN)和长短时记忆网络(LSTM),主要用于处理图形数据中的序列信息。这种架构通常在社交网络分析、推荐系统以及自然语言处理等任务中展现优势。以下是简单概述和一个简化的伪代码示例:
首先,你需要导入所需的库,如TensorFlow或PyTorch,并可能使用Graph Nets库来构建图相关的部分。
```python
import tensorflow as tf
from tensorflow.keras.layers import GraphConv, LSTM, Dense
# 假设我们有一个邻接矩阵A和节点特征X
adjacency_matrix = ... # shape [num_nodes, num_nodes]
node_features = ... # shape [num_nodes, node_feature_size]
class GCN_LSTM(tf.keras.Model):
def __init__(self, hidden_units, num_layers):
super(GCN_LSTM, self).__init__()
self.gcn_layers = [GraphConv(hidden_units, activation='relu') for _ in range(num_layers)]
self.lstm_layer = LSTM(hidden_units)
self.dense_output = Dense(1)
def call(self, inputs):
adj, node_features = inputs
for gcn in self.gcn_layers:
node_features = gcn([adj, node_features])
node_sequences = tf.unstack(node_features, axis=0) # 对每个时间步拆分
lstm_outputs = self.lstm_layer(node_sequences) # 循环LSTM
return self.dense_output(lstm_outputs[-1]) # 取最后一个时间步作为最终预测
model = GCN_LSTM(hidden_units=64, num_layers=2)
inputs = (adjacency_matrix, node_features)
predictions = model(inputs)
```
阅读全文