根据训练样本训练“微型车”售价预测模型,预测目标字段为“price”,并且输出待测样本df.head()和df.shape()算法模型可自由选择; 使用tran_test_split方法将train_price.csv划分成训练样本和测试样本; 只需筛选训练样本中车身类型(bodyType字段)为“微型车”的样本训练模型;其余特征可自由选择; 用R2评估模型在测试样本test_price.csv上的效果 整个模型具体代码

时间: 2024-03-15 16:47:56 浏览: 66
好的,接下来我将按照您的要求进行编写。 首先,我们需要导入必要的库和数据集: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score # 读取数据集 df = pd.read_csv('train_price.csv') ``` 然后,我们需要将数据集划分为训练集和测试集,并选择出车身类型为“微型车”的样本: ```python # 筛选出车身类型为“微型车”的样本 df_microcar = df[df['bodyType']=='微型车'] # 选择特征和目标变量 X = df_microcar[['power', 'kilometer', 'v_0', 'v_3', 'v_8']] y = df_microcar['price'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 在上述代码中,我们选择了一些特征作为自变量(例如发动机功率、行驶里程、车速等)和售价作为因变量,并将数据集划分为训练集和测试集(测试集的大小为20%)。 接下来,我们可以选择一个合适的模型进行训练。在这里,我们选择线性回归模型: ```python # 创建模型对象并进行训练 model = LinearRegression() model.fit(X_train, y_train) ``` 最后,我们可以使用测试数据集评估模型的表现: ```python # 对测试集进行预测 y_pred = model.predict(X_test) # 计算R2得分 r2 = r2_score(y_test, y_pred) print("R2 score:", r2) ``` 完整代码如下: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score # 读取数据集 df = pd.read_csv('train_price.csv') # 筛选出车身类型为“微型车”的样本 df_microcar = df[df['bodyType']=='微型车'] # 选择特征和目标变量 X = df_microcar[['power', 'kilometer', 'v_0', 'v_3', 'v_8']] y = df_microcar['price'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建模型对象并进行训练 model = LinearRegression() model.fit(X_train, y_train) # 对测试集进行预测 y_pred = model.predict(X_test) # 计算R2得分 r2 = r2_score(y_test, y_pred) print("R2 score:", r2) ``` 希望这个示例对您有所帮助!
阅读全文

相关推荐

最新推荐

recommend-type

Tensorflow实现在训练好的模型上进行测试

在TensorFlow中,进行模型测试是在训练阶段完成后评估模型性能的关键步骤。本篇文章将详细介绍如何在训练好的模型上进行测试,特别关注在不同文件中处理训练和测试的情况。 首先,我们要明白模型的保存是为了能够在...
recommend-type

面向目标检测的对抗样本综述

总的来说,【面向目标检测的对抗样本】是深度学习安全领域的一个重要课题,它既揭示了深度学习模型的弱点,也为模型的安全性提升提供了研究方向。通过深入理解和研究这一主题,我们可以期待更安全、更可靠的深度学习...
recommend-type

天池_二手车价格预测_Task4_建模调参

赛题要求建立一个预测模型,输入为二手车的各类属性(如品牌、年份、里程等),输出为二手车的价格。模型的性能将通过某种评估指标(如均方误差或R^2分数)来衡量,目的是尽可能地减小预测价格与实际价格之间的差距...
recommend-type

SVM与神经网络模型在股票预测中的应用研究

这些模型通过对历史股票价格走势数据进行训练,然后进行预测输出,最终通过均方误差、走势方向准确率和总盈利率等关键指标来评估模型的预测性能。 1. SVM模型,全称为支持向量机,是一种基于统计学习理论的监督学习...
recommend-type

2020五一数学建模A题 论文 煤炭价格预测问题

最终,经过训练的神经网络能够根据输入的新数据进行预测,输出最接近实际市场情况的价格。 通过数学建模和神经网络,本研究构建了一个综合多种影响因素的煤炭价格预测模型。该模型不仅能够提供煤炭价格的定量预测,...
recommend-type

简化填写流程:Annoying Form Completer插件

资源摘要信息:"Annoying Form Completer-crx插件" Annoying Form Completer是一个针对Google Chrome浏览器的扩展程序,其主要功能是帮助用户自动填充表单中的强制性字段。对于经常需要在线填写各种表单的用户来说,这是一个非常实用的工具,因为它可以节省大量时间,并减少因重复输入相同信息而产生的烦恼。 该扩展程序的描述中提到了用户在填写表格时遇到的麻烦——必须手动输入那些恼人的强制性字段。这些字段可能包括但不限于用户名、邮箱地址、电话号码等个人信息,以及各种密码、确认密码等重复性字段。Annoying Form Completer的出现,使这一问题得到了缓解。通过该扩展,用户可以在表格填充时减少到“一个压力……或两个”,意味着极大的方便和效率提升。 值得注意的是,描述中也使用了“抽浏览器”的表述,这可能意味着该扩展具备某种数据提取或自动化填充的机制,虽然这个表述不是一个标准的技术术语,它可能暗示该扩展程序能够从用户之前的行为或者保存的信息中提取必要数据并自动填充到表单中。 虽然该扩展程序具有很大的便利性,但用户在使用时仍需谨慎,因为自动填充个人信息涉及到隐私和安全问题。理想情况下,用户应该只在信任的网站上使用这种类型的扩展程序,并确保扩展程序是从可靠的来源获取,以避免潜在的安全风险。 根据【压缩包子文件的文件名称列表】中的信息,该扩展的文件名为“Annoying_Form_Completer.crx”。CRX是Google Chrome扩展的文件格式,它是一种压缩的包格式,包含了扩展的所有必要文件和元数据。用户可以通过在Chrome浏览器中访问chrome://extensions/页面,开启“开发者模式”,然后点击“加载已解压的扩展程序”按钮来安装CRX文件。 在标签部分,我们看到“扩展程序”这一关键词,它明确了该资源的性质——这是一个浏览器扩展。扩展程序通常是通过增加浏览器的功能或提供额外的服务来增强用户体验的小型软件包。这些程序可以极大地简化用户的网上活动,从保存密码、拦截广告到自定义网页界面等。 总结来看,Annoying Form Completer作为一个Google Chrome的扩展程序,提供了一个高效的解决方案,帮助用户自动化处理在线表单的填写过程,从而提高效率并减少填写表单时的麻烦。在享受便捷的同时,用户也应确保使用扩展程序时的安全性和隐私性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

使用MATLAB写一个在柱坐标系中实现以下功能的代码:1) 生成具有损耗的平面电磁波模型;2) 调整电场分量Ex和Ey的幅度和相位,以仿真三种极化的形成?

在MATLAB中,处理电磁学问题通常需要利用`physconst`、`polar2cartesian`等函数库。以下是一个简化的示例,展示了如何生成一个基本的平面电磁波模型,并调整电场分量的幅度和相位。请注意,实际的损耗模型通常会涉及到复杂的阻抗和吸收系数,这里我们将简化为理想情况。 ```matlab % 初始化必要的物理常数 c = physconst('LightSpeed'); % 光速 omega = 2*pi * 5e9; % 角频率 (例如 GHz) eps0 = physconst('PermittivityOfFreeSpace'); % 真空介电常数 % 定义网格参数
recommend-type

TeraData技术解析与应用

资源摘要信息: "TeraData是一个高性能、高可扩展性的数据仓库和数据库管理系统,它支持大规模的数据存储和复杂的数据分析处理。TeraData的产品线主要面向大型企业级市场,提供多种数据仓库解决方案,包括并行数据仓库和云数据仓库等。由于其强大的分析能力和出色的处理速度,TeraData被广泛应用于银行、电信、制造、零售和其他需要处理大量数据的行业。TeraData系统通常采用MPP(大规模并行处理)架构,这意味着它可以通过并行处理多个计算任务来显著提高性能和吞吐量。" 由于提供的信息中描述部分也是"TeraData",且没有详细的内容,所以无法进一步提供关于该描述的详细知识点。而标签和压缩包子文件的文件名称列表也没有提供更多的信息。 在讨论TeraData时,我们可以深入了解以下几个关键知识点: 1. **MPP架构**:TeraData使用大规模并行处理(MPP)架构,这种架构允许系统通过大量并行运行的处理器来分散任务,从而实现高速数据处理。在MPP系统中,数据通常分布在多个节点上,每个节点负责一部分数据的处理工作,这样能够有效减少数据传输的时间,提高整体的处理效率。 2. **并行数据仓库**:TeraData提供并行数据仓库解决方案,这是针对大数据环境优化设计的数据库架构。它允许同时对数据进行读取和写入操作,同时能够支持对大量数据进行高效查询和复杂分析。 3. **数据仓库与BI**:TeraData系统经常与商业智能(BI)工具结合使用。数据仓库可以收集和整理来自不同业务系统的数据,BI工具则能够帮助用户进行数据分析和决策支持。TeraData的数据仓库解决方案提供了一整套的数据分析工具,包括但不限于ETL(抽取、转换、加载)工具、数据挖掘工具和OLAP(在线分析处理)功能。 4. **云数据仓库**:除了传统的本地部署解决方案,TeraData也在云端提供了数据仓库服务。云数据仓库通常更灵活、更具可伸缩性,可根据用户的需求动态调整资源分配,同时降低了企业的运维成本。 5. **高可用性和扩展性**:TeraData系统设计之初就考虑了高可用性和可扩展性。系统可以通过增加更多的处理节点来线性提升性能,同时提供了多种数据保护措施以保证数据的安全和系统的稳定运行。 6. **优化与调优**:对于数据仓库而言,性能优化是一个重要的环节。TeraData提供了一系列的优化工具和方法,比如SQL调优、索引策略和执行计划分析等,来帮助用户优化查询性能和提高数据访问效率。 7. **行业应用案例**:在金融、电信、制造等行业中,TeraData可以处理海量的交易数据、客户信息和业务数据,它在欺诈检测、客户关系管理、供应链优化等关键业务领域发挥重要作用。 8. **集成与兼容性**:TeraData系统支持与多种不同的业务应用和工具进行集成。它也遵循行业标准,能够与其他数据源、分析工具和应用程序无缝集成,为用户提供一致的用户体验。 以上便是关于TeraData的知识点介绍。由于文件描述内容重复且过于简略,未能提供更深层次的介绍,如果需要进一步详细的知识,建议参考TeraData官方文档或相关技术文章以获取更多的专业信息。