corr_subset = corr[1:21] # 取第2至第21个数字,即索引1至20 corr_matrix = np.array(corr_subset).reshape((5, 4)) ,生成corr_matrix的转置矩阵
时间: 2024-05-04 12:20:43 浏览: 65
如果想要生成corr_matrix的转置矩阵,可以使用numpy中的transpose函数,代码如下:
```
corr_subset = corr[1:21] # 取第2至第21个数字,即索引1至20
corr_matrix = np.array(corr_subset).reshape((5, 4)) # 生成5行4列的矩阵
corr_matrix_T = np.transpose(corr_matrix) # 生成转置矩阵
```
其中,numpy中的transpose函数可以对数组进行转置操作,它的参数是一个表示轴的元组,如果不传入参数则默认对二维数组进行转置。在这里,我们没有传入参数,所以默认对二维数组corr_matrix进行转置。
相关问题
def preprocess(data, window): data_corr = data.corr()['Power'] key = [] for i in data_corr.keys(): if (data_corr[i] > 0.6): key.append(i) data = data[key] data = data.dropna(subset=['Power']) #数据预处理: 删除功率为空的数据组 data = data.fillna(0) # 数据预处理:将缺失值NAN值赋0 data[data < 0] = 0 #数据预处理:对<0的功率值赋为0 scaler = MinMaxScaler() # data[key] = scaler.fit_transform(data[key].to_numpy()) train_x = [] train_y = [] L = len(data) for i in range(L - window): train_seq = data[key][i:i + window] train_x.append(train_seq) train_label = data['Power'][i + window:i + window + 1] train_y.append(train_label) train_x = torch.from_numpy(np.array(train_x)) train_y = torch.from_numpy(np.array(train_y)) train_x = torch.tensor(train_x, dtype=torch.float) train_y = torch.tensor(train_y, dtype=torch.float) print(train_y.type()) return train_x, train_y
这段代码是一个数据预处理的函数,其中包含以下步骤:
1. 首先计算 DataFrame 数据中 'Power' 列与其他列的相关系数,筛选出相关系数大于 0.6 的列作为特征列;
2. 删除 'Power' 列中包含缺失值(NaN)的行;
3. 将 DataFrame 中的缺失值用 0 填充;
4. 对 DataFrame 中小于 0 的功率值赋为 0;
5. 使用 MinMaxScaler 进行特征缩放;
6. 将数据按照窗口大小 window 进行切分,每个窗口内包含 window 个连续的特征值和一个对应的功率值,作为训练数据;
7. 将训练数据转换为 PyTorch 张量,并返回训练数据集 train_x 和 train_y。
需要注意的是,该函数中使用了 PyTorch 中的张量(tensor)作为数据类型,并且使用了 MinMaxScaler 对特征进行缩放。
corr_matrix <- cor(correlation) corr_df <- corr_matrix
这段代码中,首先通过`cor()`函数计算了一个矩阵`correlation`中各列之间的相关系数,然后将这些相关系数存储在`corr_matrix`矩阵中。
接着,通过将`corr_matrix`矩阵传递给`data.frame()`函数,将其转换为一个数据框`corr_df`。这样做的目的是为了方便后续对相关系数进行处理和可视化。
例如,可以使用`corrplot()`函数对`corr_matrix`矩阵进行可视化,以直观地展示不同变量之间的相关关系。也可以使用`subset()`和`which()`函数等对`corr_df`数据框进行筛选和排序,以便更好地理解和分析相关系数的含义。
阅读全文