ampl路径优化问题代码
时间: 2023-07-14 21:13:14 浏览: 143
以下是一段使用 Python 和 PuLP 模块来解决最小路径覆盖问题的代码示例:
```python
from pulp import *
# 定义节点和边
nodes = ["A", "B", "C", "D", "E"]
edges = [("A", "B"), ("B", "C"), ("C", "D"), ("D", "E"), ("E", "A")]
# 创建问题
prob = LpProblem("Minimum Path Cover Problem", LpMinimize)
# 创建节点变量
x = LpVariable.dicts("Node", nodes, lowBound=0, upBound=1, cat=LpInteger)
# 创建目标函数
prob += lpSum([x[node] for node in nodes])
# 添加约束条件
for edge in edges:
prob += x[edge[0]] - x[edge[1]] >= 0
# 求解问题
prob.solve()
# 打印结果
print("Status:", LpStatus[prob.status])
print("Minimum number of paths:", value(prob.objective))
# 打印路径覆盖
for node in nodes:
if x[node].value() == 1:
print("Path starting from", node + ":", end=" ")
next_node = node
while True:
for edge in edges:
if edge[0] == next_node and x[edge[1]].value() == 1:
print(edge[0] + "-" + edge[1], end=" ")
next_node = edge[1]
break
elif edge == edges[-1]:
print(next_node)
next_node = None
if next_node is None:
break
```
这段代码使用 PuLP 模块来定义问题、变量、目标函数和约束条件,并使用 `prob.solve()` 来求解问题。最后,它输出每个路径的起点和路径,以及最小路径数量。
阅读全文