Loss nan, acc: 96.875000
时间: 2024-06-02 19:09:46 浏览: 72
这个输出意味着在训练模型时,损失函数(loss)出现了 NaN(not a number)的情况,即损失值变为了无穷大或未定义的数值,这通常是由于数值计算过程中出现了错误的原因。而准确率(acc)为96.875%,表示模型在训练集上的精度为96.875%。不过需要注意的是,由于损失函数出现 NaN,这个模型很可能存在严重的问题,需要进行进一步的调试和修复。
相关问题
loss: 0.0855 - acc: 0.9869 - val_loss: 0.0990 - val_acc: 0.9782什么意思
这是一个神经网络模型的训练结果,其中loss表示训练误差,acc表示训练准确率,val_loss表示验证误差,val_acc表示验证准确率。在这个模型中,训练误差为0.0855,训练准确率为0.9869,验证误差为0.0990,验证准确率为0.9782。
Epoch 00019: val_loss did not improve from 1.18629 Epoch 20/20 - 51s - loss: 1.2196 - acc: 0.5283 - val_loss: 1.1793 - val_acc: 0.5461
This is the log output of a neural network training process. The model is being trained for 20 epochs, and on the 19th epoch, the validation loss did not improve from the previous epoch's value of 1.18629. The model's loss and accuracy during the training process are also shown, with a final training loss of 1.2196 and accuracy of 0.5283, and a validation loss of 1.1793 and accuracy of 0.5461.
阅读全文