loss: nan - accuracy: 0.8802 - val_loss: nan - val_accuracy: 0.8792 - lr: 0.0010 loss为nan的原因
时间: 2024-05-20 20:14:32 浏览: 207
当loss为nan时,通常是由于模型训练中出现了一些数值计算上的问题,如除以0或者对负数求对数等非法操作。这些操作会导致计算出的损失值为nan。
解决这个问题的方法有以下几种:
1. 检查输入数据是否有问题,比如是否存在NaN或Inf等异常值;
2. 尝试减小学习率,减少模型的复杂度等;
3. 检查模型架构,确保没有出现不合理的计算,例如除以0或者对负数求对数等非法操作;
4. 尝试使用数值稳定的计算方法,例如tf.keras.backend.epsilon()等。
相关问题
loss: nan - accuracy: 0.8801 - val_loss: nan - val_accuracy: 0.8791 解释一下
这是一个神经网络训练过程中的输出结果,其中包含训练集和验证集的损失值(loss)和准确率(accuracy)。在这个例子中,损失值显示为NaN(Not a Number),这通常表示模型出现了数值计算问题,可能是由于梯度消失或爆炸等原因导致的。此外,训练准确率(accuracy)和验证准确率(val_accuracy)也被显示。在这个例子中,训练准确率为0.8801,而验证准确率为0.8791。这意味着模型在训练集上的表现略好于验证集,但两者之间的差异不大。需要进一步分析和调整模型,以解决损失值为NaN的问题并提高训练和验证准确率。
60/60 [==============================] - 19s 89ms/step - loss: 229.5776 - accuracy: 0.7818 - val_loss: 75.8205 - val_accuracy: 0.2848 Epoch 2/50 60/60 [==============================] - 5s 78ms/step - loss: 59.5195 - accuracy: 0.8323 - val_loss: 52.4355 - val_accuracy: 0.7152 Epoch 3/50 60/60 [==============================] - 5s 77ms/step - loss: 47.9256 - accuracy: 0.8453 - val_loss: 47.9466 - val_accuracy: 0.2848 Epoch 4/50 60/60 [==============================] - 5s 77ms/step - loss: 41.7355 - accuracy: 0.8521 - val_loss: 37.7279 - val_accuracy: 0.2848 Epoch 5/50 60/60 [==============================] - 5s 76ms/step - loss: 40.1783 - accuracy: 0.8505 - val_loss: 40.2293 - val_accuracy: 0.7152 Epoch 6/50 60/60 [==============================] - 5s 76ms/step - loss: 37.8785 - accuracy: 0.8781 - val_loss: 38.5298 - val_accuracy: 0.2848 Epoch 7/50 60/60 [==============================] - 5s 77ms/step - loss: 37.1490 - accuracy: 0.8786 - val_loss: 37.1918 - val_accuracy: 0.2848 Epoch 8/50 60/60 [==============================] - 5s 78ms/step - loss: 34.6709 - accuracy: 0.9156 - val_loss: 34.0621 - val_accuracy: 0.2765 Epoch 9/50 60/60 [==============================] - 5s 76ms/step - loss: 35.7891 - accuracy: 0.8849 - val_loss: 37.8741 - val_accuracy: 0.7152 Epoch 10/50 60/60 [==============================] - 5s 76ms/step - loss: 34.5359 - accuracy: 0.9141 - val_loss: 35.2664 - val_accuracy: 0.7152 Epoch 11/50 60/60 [==============================] - 5s 76ms/step - loss: 34.6172 - accuracy: 0.9016 - val_loss: 34.5135 - val_accuracy: 0.6258 Epoch 12/50 60/60 [==============================] - 5s 76ms/step - loss: 34.2331 - accuracy: 0.9083 - val_loss: 34.0945 - val_accuracy: 0.9168 Epoch 13/50 60/60 [==============================] - 5s 79ms/step - loss: 37.4175 - accuracy: 0.9000 - val_loss: 37.7885 - val_accuracy: 0.7152 16/16 - 0s - loss: 34.0621 - accuracy: 0.2765 - 307ms/epoch - 19ms/step Test accuracy: 0.27650728821754456
Based on the log you provided, it seems like you have trained a machine learning model for classification. The model achieved an accuracy of 0.78 on the training set and 0.28 on the validation set after 50 epochs of training. The test accuracy is also reported to be 0.28. Can you provide more information about the dataset and the model architecture?
阅读全文