Epoch 20/20 35/35 [==============================] - 2s 50ms/step - loss: 3.3574e-04 - accuracy: 9.1870e-04 - val_loss: 8.7506e-04

时间: 2023-09-09 14:06:18 浏览: 23
这是一个深度学习模型的训练日志,其中Epoch 20/20表示模型已经训练了20个epoch(迭代轮数),35/35 [==============================]表示当前epoch的训练进度,loss: 3.3574e-04表示当前epoch的训练损失值,accuracy: 9.1870e-04表示当前epoch的训练准确率,val_loss: 8.7506e-04表示当前epoch的验证集上的损失值。训练损失值和验证集损失值都越小,表示模型的性能越好。
相关问题

config configs/culane.py

这是一个CULane数据集的配置文件,其中包含了训练、验证和测试的相关参数设置。 ``` _base_ = [ '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/culane.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] # model settings model = dict( decode_head=dict(num_classes=5), auxiliary_head=dict(num_classes=5)) # dataset settings data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(type='CULane', split='train'), val=dict(type='CULane', split='val'), test=dict(type='CULane', split='test')) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict(policy='poly', power=0.9, by_epoch=False) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=160) checkpoint_config = dict(by_epoch=False, interval=20) evaluation = dict(interval=20, metric='mIoU') ``` 其中: - `_base_` 表示使用的基础配置文件,这里使用了模型、数据集、运行时设置和学习率调度等基础配置文件。 - `model` 表示模型相关的设置,这里使用 FCN-R50-d8 作为基础模型,decode_head 和 auxiliary_head 都设置为 5 类别(即 5 条车道线)。 - `data` 表示数据集相关的设置,包括每个 GPU 用来训练的样本数、数据集划分方式等。 - `optimizer` 和 `optimizer_config` 表示优化器相关的设置,这里使用 SGD 优化器,设置了学习率、动量和权重衰减等参数。 - `lr_config` 表示学习率调度的设置,这里使用了 Poly 调度,设置了幂次和是否按 epoch 计算。 - `runner` 表示训练器相关的设置,这里使用了 EpochBasedRunner,并且设置了最大训练轮数。 - `checkpoint_config` 表示保存模型参数的设置,这里设置了每 20 轮保存一次模型,并且不按 epoch 计算。 - `evaluation` 表示验证时的评估设置,这里设置了每 20 轮进行一次验证,并且使用 mIoU 作为评估指标。

import torchimport torch.nn as nnimport torch.optim as optimimport numpy as np# 定义视频特征提取模型class VideoFeatureExtractor(nn.Module): def __init__(self): super(VideoFeatureExtractor, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) return x# 定义推荐模型class VideoRecommendationModel(nn.Module): def __init__(self, num_videos, embedding_dim): super(VideoRecommendationModel, self).__init__() self.video_embedding = nn.Embedding(num_videos, embedding_dim) self.user_embedding = nn.Embedding(num_users, embedding_dim) self.fc1 = nn.Linear(2 * embedding_dim, 64) self.fc2 = nn.Linear(64, 1) def forward(self, user_ids, video_ids): user_embed = self.user_embedding(user_ids) video_embed = self.video_embedding(video_ids) x = torch.cat([user_embed, video_embed], dim=1) x = torch.relu(self.fc1(x)) x = self.fc2(x) return torch.sigmoid(x)# 加载数据data = np.load('video_data.npy')num_users, num_videos, embedding_dim = data.shapetrain_data = torch.tensor(data[:int(0.8 * num_users)])test_data = torch.tensor(data[int(0.8 * num_users):])# 定义模型和优化器feature_extractor = VideoFeatureExtractor()recommendation_model = VideoRecommendationModel(num_videos, embedding_dim)optimizer = optim.Adam(recommendation_model.parameters())# 训练模型for epoch in range(10): for user_ids, video_ids, ratings in train_data: optimizer.zero_grad() video_features = feature_extractor(video_ids) ratings_pred = recommendation_model(user_ids, video_ids) loss = nn.BCELoss()(ratings_pred, ratings) loss.backward() optimizer.step() # 计算测试集准确率 test_ratings_pred = recommendation_model(test_data[:, 0], test_data[:, 1]) test_loss = nn.BCELoss()(test_ratings_pred, test_data[:, 2]) test_accuracy = ((test_ratings_pred > 0.5).float() == test_data[:, 2]).float().mean() print('Epoch %d: Test Loss %.4f, Test Accuracy %.4f' % (epoch, test_loss.item(), test_accuracy.item()))解释每一行代码

1. `import torch`: 导入 PyTorch 模块 2. `import torch.nn as nn`: 导入 PyTorch 中的神经网络模块 3. `import torch.optim as optim`: 导入 PyTorch 中的优化器模块 4. `import numpy as np`: 导入 NumPy 模块,并将其重命名为 np 5. `class VideoFeatureExtractor(nn.Module):`:定义视频特征提取模型,继承自 nn.Module 6. `def __init__(self):`:定义初始化函数,初始化视频特征提取模型中的卷积层和池化层 7. `super(VideoFeatureExtractor, self).__init__()`: 调用父类的初始化函数 8. `self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)`: 定义一个 3 x 3 的卷积层,输入通道数为 3 ,输出通道数为 16,卷积核大小为 3,步长为 1,填充为 1 9. `self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)`: 定义一个 3 x 3 的卷积层,输入通道数为 16 ,输出通道数为 32,卷积核大小为 3,步长为 1,填充为 1 10. `self.pool = nn.MaxPool2d(kernel_size=2, stride=2)`: 定义一个大小为 2x2 的最大池化层 11. `def forward(self, x):`: 定义前向传播函数,将输入 x 经过卷积层和池化层后展平输出 12. `x = self.pool(torch.relu(self.conv1(x)))`: 将输入 x 经过第一层卷积层、ReLU 激活函数和最大池化层 13. `x = self.pool(torch.relu(self.conv2(x)))`: 将输入 x 经过第二层卷积层、ReLU 激活函数和最大池化层 14. `x = x.view(-1, 32 * 8 * 8)`: 将输出结果展平为一维向量,大小为 32*8*8 15. `return x`: 返回输出结果 x 16. `class VideoRecommendationModel(nn.Module):`:定义推荐模型,继承自 nn.Module 17. `def __init__(self, num_videos, embedding_dim):`:定义初始化函数,初始化推荐模型中的用户嵌入层、视频嵌入层和全连接层 18. `super(VideoRecommendationModel, self).__init__()`: 调用父类的初始化函数 19. `self.video_embedding = nn.Embedding(num_videos, embedding_dim)`: 定义视频嵌入层,输入维度为 num_videos,输出维度为 embedding_dim 20. `self.user_embedding = nn.Embedding(num_users, embedding_dim)`: 定义用户嵌入层,输入维度为 num_users,输出维度为 embedding_dim 21. `self.fc1 = nn.Linear(2 * embedding_dim, 64)`: 定义一个全连接层,输入维度为 2*embedding_dim,输出维度为 64 22. `self.fc2 = nn.Linear(64, 1)`: 定义一个全连接层,输入维度为 64,输出维度为 1 23. `def forward(self, user_ids, video_ids):`: 定义前向传播函数,将用户和视频 id 经过嵌入层和全连接层计算得到推荐评分 24. `user_embed = self.user_embedding(user_ids)`: 将用户 id 经过用户嵌入层得到用户嵌入 25. `video_embed = self.video_embedding(video_ids)`: 将视频 id 经过视频嵌入层得到视频嵌入 26. `x = torch.cat([user_embed, video_embed], dim=1)`: 将用户嵌入和视频嵌入拼接起来 27. `x = torch.relu(self.fc1(x))`: 将拼接后的结果经过激活函数和全连接层 28. `x = self.fc2(x)`: 将全连接层的输出作为推荐评分 29. `return torch.sigmoid(x)`: 将推荐评分经过 sigmoid 函数转换到 [0,1] 区间内 30. `data = np.load('video_data.npy')`: 从文件中读取数据 31. `num_users, num_videos, embedding_dim = data.shape`: 获取数据的形状,即用户数、视频数和嵌入维度 32. `train_data = torch.tensor(data[:int(0.8 * num_users)])`: 将前 80% 的数据作为训练集,并转换为 PyTorch 的 tensor 格式 33. `test_data = torch.tensor(data[int(0.8 * num_users):])`: 将后 20% 的数据作为测试集,并转换为 PyTorch 的 tensor 格式 34. `feature_extractor = VideoFeatureExtractor()`: 创建视频特征提取模型的实例 35. `recommendation_model = VideoRecommendationModel(num_videos, embedding_dim)`: 创建推荐模型的实例 36. `optimizer = optim.Adam(recommendation_model.parameters())`: 创建优化器,使用 Adam 算法优化推荐模型的参数 37. `for epoch in range(10):`: 开始训练,进行 10 轮迭代 38. `for user_ids, video_ids, ratings in train_data:`: 对训练集中的每个样本进行训练 39. `optimizer.zero_grad()`: 将梯度清零 40. `video_features = feature_extractor(video_ids)`: 提取视频特征 41. `ratings_pred = recommendation_model(user_ids, video_ids)`: 通过推荐模型得到预测评分 42. `loss = nn.BCELoss()(ratings_pred, ratings)`: 计算二分类交叉熵损失 43. `loss.backward()`: 反向传播求梯度 44. `optimizer.step()`: 更新模型参数 45. `test_ratings_pred = recommendation_model(test_data[:, 0], test_data[:, 1])`: 对测试集进行评分预测 46. `test_loss = nn.BCELoss()(test_ratings_pred, test_data[:, 2])`: 计算测试集上的损失 47. `test_accuracy = ((test_ratings_pred > 0.5).float() == test_data[:, 2]).float().mean()`: 计算测试集上的准确率 48. `print('Epoch %d: Test Loss %.4f, Test Accuracy %.4f' % (epoch, test_loss.item(), test_accuracy.item()))`: 输出每轮迭代的测试集损失和准确率

相关推荐

最新推荐

recommend-type

Idris -- NumPy Cookbook -- 2012.pdf

Idris -- NumPy Cookbook -- 2012
recommend-type

Мэтиз -- Изучаем Python -- 2020.pdf

Мэтиз -- Изучаем Python -- 2020
recommend-type

2022-2028全球与中国GaAs器件市场现状及未来发展趋势.docx

2022-2028全球与中国GaAs器件市场现状及未来发展趋势.docx
recommend-type

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx
recommend-type

Любанович -- Простой Python, 2-е изд. -- 2021.pdf

Любанович -- Простой Python, 2-е изд. -- 2021
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。