Epoch 20/20 35/35 [==============================] - 2s 50ms/step - loss: 3.3574e-04 - accuracy: 9.1870e-04 - val_loss: 8.7506e-04

时间: 2023-09-09 13:06:18 浏览: 117
这是一个深度学习模型的训练日志,其中Epoch 20/20表示模型已经训练了20个epoch(迭代轮数),35/35 [==============================]表示当前epoch的训练进度,loss: 3.3574e-04表示当前epoch的训练损失值,accuracy: 9.1870e-04表示当前epoch的训练准确率,val_loss: 8.7506e-04表示当前epoch的验证集上的损失值。训练损失值和验证集损失值都越小,表示模型的性能越好。
相关问题

import torchimport torch.nn as nnimport torch.optim as optimimport numpy as np# 定义视频特征提取模型class VideoFeatureExtractor(nn.Module): def __init__(self): super(VideoFeatureExtractor, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) return x# 定义推荐模型class VideoRecommendationModel(nn.Module): def __init__(self, num_videos, embedding_dim): super(VideoRecommendationModel, self).__init__() self.video_embedding = nn.Embedding(num_videos, embedding_dim) self.user_embedding = nn.Embedding(num_users, embedding_dim) self.fc1 = nn.Linear(2 * embedding_dim, 64) self.fc2 = nn.Linear(64, 1) def forward(self, user_ids, video_ids): user_embed = self.user_embedding(user_ids) video_embed = self.video_embedding(video_ids) x = torch.cat([user_embed, video_embed], dim=1) x = torch.relu(self.fc1(x)) x = self.fc2(x) return torch.sigmoid(x)# 加载数据data = np.load('video_data.npy')num_users, num_videos, embedding_dim = data.shapetrain_data = torch.tensor(data[:int(0.8 * num_users)])test_data = torch.tensor(data[int(0.8 * num_users):])# 定义模型和优化器feature_extractor = VideoFeatureExtractor()recommendation_model = VideoRecommendationModel(num_videos, embedding_dim)optimizer = optim.Adam(recommendation_model.parameters())# 训练模型for epoch in range(10): for user_ids, video_ids, ratings in train_data: optimizer.zero_grad() video_features = feature_extractor(video_ids) ratings_pred = recommendation_model(user_ids, video_ids) loss = nn.BCELoss()(ratings_pred, ratings) loss.backward() optimizer.step() # 计算测试集准确率 test_ratings_pred = recommendation_model(test_data[:, 0], test_data[:, 1]) test_loss = nn.BCELoss()(test_ratings_pred, test_data[:, 2]) test_accuracy = ((test_ratings_pred > 0.5).float() == test_data[:, 2]).float().mean() print('Epoch %d: Test Loss %.4f, Test Accuracy %.4f' % (epoch, test_loss.item(), test_accuracy.item()))解释每一行代码

1. `import torch`: 导入 PyTorch 模块 2. `import torch.nn as nn`: 导入 PyTorch 中的神经网络模块 3. `import torch.optim as optim`: 导入 PyTorch 中的优化器模块 4. `import numpy as np`: 导入 NumPy 模块,并将其重命名为 np 5. `class VideoFeatureExtractor(nn.Module):`:定义视频特征提取模型,继承自 nn.Module 6. `def __init__(self):`:定义初始化函数,初始化视频特征提取模型中的卷积层和池化层 7. `super(VideoFeatureExtractor, self).__init__()`: 调用父类的初始化函数 8. `self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)`: 定义一个 3 x 3 的卷积层,输入通道数为 3 ,输出通道数为 16,卷积核大小为 3,步长为 1,填充为 1 9. `self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)`: 定义一个 3 x 3 的卷积层,输入通道数为 16 ,输出通道数为 32,卷积核大小为 3,步长为 1,填充为 1 10. `self.pool = nn.MaxPool2d(kernel_size=2, stride=2)`: 定义一个大小为 2x2 的最大池化层 11. `def forward(self, x):`: 定义前向传播函数,将输入 x 经过卷积层和池化层后展平输出 12. `x = self.pool(torch.relu(self.conv1(x)))`: 将输入 x 经过第一层卷积层、ReLU 激活函数和最大池化层 13. `x = self.pool(torch.relu(self.conv2(x)))`: 将输入 x 经过第二层卷积层、ReLU 激活函数和最大池化层 14. `x = x.view(-1, 32 * 8 * 8)`: 将输出结果展平为一维向量,大小为 32*8*8 15. `return x`: 返回输出结果 x 16. `class VideoRecommendationModel(nn.Module):`:定义推荐模型,继承自 nn.Module 17. `def __init__(self, num_videos, embedding_dim):`:定义初始化函数,初始化推荐模型中的用户嵌入层、视频嵌入层和全连接层 18. `super(VideoRecommendationModel, self).__init__()`: 调用父类的初始化函数 19. `self.video_embedding = nn.Embedding(num_videos, embedding_dim)`: 定义视频嵌入层,输入维度为 num_videos,输出维度为 embedding_dim 20. `self.user_embedding = nn.Embedding(num_users, embedding_dim)`: 定义用户嵌入层,输入维度为 num_users,输出维度为 embedding_dim 21. `self.fc1 = nn.Linear(2 * embedding_dim, 64)`: 定义一个全连接层,输入维度为 2*embedding_dim,输出维度为 64 22. `self.fc2 = nn.Linear(64, 1)`: 定义一个全连接层,输入维度为 64,输出维度为 1 23. `def forward(self, user_ids, video_ids):`: 定义前向传播函数,将用户和视频 id 经过嵌入层和全连接层计算得到推荐评分 24. `user_embed = self.user_embedding(user_ids)`: 将用户 id 经过用户嵌入层得到用户嵌入 25. `video_embed = self.video_embedding(video_ids)`: 将视频 id 经过视频嵌入层得到视频嵌入 26. `x = torch.cat([user_embed, video_embed], dim=1)`: 将用户嵌入和视频嵌入拼接起来 27. `x = torch.relu(self.fc1(x))`: 将拼接后的结果经过激活函数和全连接层 28. `x = self.fc2(x)`: 将全连接层的输出作为推荐评分 29. `return torch.sigmoid(x)`: 将推荐评分经过 sigmoid 函数转换到 [0,1] 区间内 30. `data = np.load('video_data.npy')`: 从文件中读取数据 31. `num_users, num_videos, embedding_dim = data.shape`: 获取数据的形状,即用户数、视频数和嵌入维度 32. `train_data = torch.tensor(data[:int(0.8 * num_users)])`: 将前 80% 的数据作为训练集,并转换为 PyTorch 的 tensor 格式 33. `test_data = torch.tensor(data[int(0.8 * num_users):])`: 将后 20% 的数据作为测试集,并转换为 PyTorch 的 tensor 格式 34. `feature_extractor = VideoFeatureExtractor()`: 创建视频特征提取模型的实例 35. `recommendation_model = VideoRecommendationModel(num_videos, embedding_dim)`: 创建推荐模型的实例 36. `optimizer = optim.Adam(recommendation_model.parameters())`: 创建优化器,使用 Adam 算法优化推荐模型的参数 37. `for epoch in range(10):`: 开始训练,进行 10 轮迭代 38. `for user_ids, video_ids, ratings in train_data:`: 对训练集中的每个样本进行训练 39. `optimizer.zero_grad()`: 将梯度清零 40. `video_features = feature_extractor(video_ids)`: 提取视频特征 41. `ratings_pred = recommendation_model(user_ids, video_ids)`: 通过推荐模型得到预测评分 42. `loss = nn.BCELoss()(ratings_pred, ratings)`: 计算二分类交叉熵损失 43. `loss.backward()`: 反向传播求梯度 44. `optimizer.step()`: 更新模型参数 45. `test_ratings_pred = recommendation_model(test_data[:, 0], test_data[:, 1])`: 对测试集进行评分预测 46. `test_loss = nn.BCELoss()(test_ratings_pred, test_data[:, 2])`: 计算测试集上的损失 47. `test_accuracy = ((test_ratings_pred > 0.5).float() == test_data[:, 2]).float().mean()`: 计算测试集上的准确率 48. `print('Epoch %d: Test Loss %.4f, Test Accuracy %.4f' % (epoch, test_loss.item(), test_accuracy.item()))`: 输出每轮迭代的测试集损失和准确率

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本 % P 为输入矢量 P=[0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10;0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20;sin(0.8),sin(1.6),sin(2.4),sin(3.2),sin(4),sin(4.8),sin(5.6),sin(6.4),sin(7.2),sin(8),sin(8.8),sin(9.6),sin(10.4),sin(11.2),sin(12),sin(12.8),sin(13.6),sin(14.4),sin(15.2),sin(16),sin(16.8)]; % T 为目标矢量 T=[7.17,12.25,11.75,7.67,4.43,6.29,14.69,27.42,39.94,48.14,50.85,50.51,51.72,58.46,71.63,88.57,104.59,115.91,121.86,125.37,131.12;]; C=[0.5,4,7.5,17.5;1,8,15,35;sin(1.6),sin(7.2),sin(12.8),sin(28.8);]; T1=[12.25,39.94,88.57,371.2321;]; pause; clc net=newff(minmax(P),[3,1],{'tansig','purelin'})% 创建一个新的前向神经网络 % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用 TRAINGDM 算法训练 BP 网络 [net,tr]=train(net,P,T); pause clc 将其显示图像

plot(tr.epoch,tr.perf) xlabel('训练次数') ylabel('误差') title('训练误差曲线') pause clc % 对 BP 神经网络进行仿真 Y=sim(net,P) pause clc % 显示仿真结果 figure(2) plot(C(1,:),T1,'b+',C(1,:),Y,'r*') xlabel('输入变量') ylabel('输出变量') title('BP 神经网络的仿真结果') legend('目标值','仿真值') grid on pause clc
阅读全文

相关推荐

rar

最新推荐

recommend-type

基于微信小程序的校园论坛;微信小程序;云开发;云数据库;云储存;云函数;纯JS无后台;全部资料+详细文档+高分项目.zip

【资源说明】 基于微信小程序的校园论坛;微信小程序;云开发;云数据库;云储存;云函数;纯JS无后台;全部资料+详细文档+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

单电阻采样 基于单电阻采样的相电流重构算法 keil完整工程 单电阻采样 f103的单电阻,完整工程,带文档,带硬件资料 f3平台的单电阻完整工程,代码详细注释 还有微芯的单电阻smo代码加文档

单电阻采样 基于单电阻采样的相电流重构算法 keil完整工程。 单电阻采样 f103的单电阻,完整工程,带文档,带硬件资料。 f3平台的单电阻完整工程,代码详细注释。 还有微芯的单电阻smo代码加文档 具体如截图请看下
recommend-type

jQuery左侧导航右侧tab页面切换.zip

jQuery左侧导航右侧tab页面切换
recommend-type

数据结构之哈希查找方法

哈希查找
recommend-type

五相电机邻近四矢量SVPWM模型-MATLAB-Simulink仿真模型包括: (1)原理说明文档(重要):包括扇区判断、矢量作用时间计算、矢量作用顺序及切时间计算、PWM波的生成; (2)输出部分仿

五相电机邻近四矢量SVPWM模型_MATLAB_Simulink仿真模型包括: (1)原理说明文档(重要):包括扇区判断、矢量作用时间计算、矢量作用顺序及切时间计算、PWM波的生成; (2)输出部分仿真波形及仿真说明文档; (3)完整版仿真模型:Simulink仿真模型; 注意,只包含五相电机邻近四矢量SVPWM算法,并非五相电机双闭环矢量控制,如果想要五相电机双闭环矢量控制资料,另一个链接。 资料介绍过程十分详细
recommend-type

GitHub图片浏览插件:直观展示代码中的图像

资源摘要信息: "ImagesOnGitHub-crx插件" 知识点概述: 1. 插件功能与用途 2. 插件使用环境与限制 3. 插件的工作原理 4. 插件的用户交互设计 5. 插件的图标和版权问题 6. 插件的兼容性 1. 插件功能与用途 插件"ImagesOnGitHub-crx"设计用于增强GitHub这一开源代码托管平台的用户体验。在GitHub上,用户可以浏览众多的代码仓库和项目,但GitHub默认情况下在浏览代码仓库时,并不直接显示图像文件内容,而是提供一个“查看原始文件”的链接。这使得用户体验受到一定限制,特别是对于那些希望直接在网页上预览图像的用户来说不够方便。该插件正是为了解决这一问题,允许用户在浏览GitHub上的图像文件时,无需点击链接即可直接在当前页面查看图像,从而提供更为流畅和直观的浏览体验。 2. 插件使用环境与限制 该插件是专为使用GitHub的用户提供便利的。它能够在GitHub的代码仓库页面上发挥作用,当用户访问的是图像文件页面时。值得注意的是,该插件目前只支持".png"格式的图像文件,对于其他格式如.jpg、.gif等并不支持。用户在使用前需了解这一限制,以免在期望查看其他格式文件时遇到不便。 3. 插件的工作原理 "ImagesOnGitHub-crx"插件的工作原理主要依赖于浏览器的扩展机制。插件安装后,会监控用户在GitHub上的操作。当用户访问到图像文件对应的页面时,插件会通过JavaScript检测页面中的图像文件类型,并判断是否为支持的.png格式。如果是,它会在浏览器地址栏的图标位置上显示一个小octocat图标,用户点击这个图标即可触发插件功能,直接在当前页面上查看到图像。这一功能的实现,使得用户无需离开当前页面即可预览图像内容。 4. 插件的用户交互设计 插件的用户交互设计体现了用户体验的重要性。插件通过在地址栏中增加一个小octocat图标来提示用户当前页面有图像文件可用,这是一种直观的视觉提示。用户通过简单的点击操作即可触发查看图像的功能,流程简单直观,减少了用户的学习成本和操作步骤。 5. 插件的图标和版权问题 由于插件设计者在制作图标方面经验不足,因此暂时借用了GitHub的标志作为插件图标。插件的作者明确表示,如果存在任何错误或版权问题,将会进行更改。这体现了开发者对知识产权尊重的态度,同时也提醒了其他开发者在使用或设计相关图标时应当考虑到版权法律的约束,避免侵犯他人的知识产权。 6. 插件的兼容性 插件的兼容性是评估其可用性的重要标准之一。由于插件是为Chrome浏览器的用户所设计,因此它使用了Chrome扩展程序的标准格式,即.crx文件。用户需要通过浏览器的扩展程序管理界面进行安装。尽管目前插件仅支持.png图像格式,但对于希望在GitHub上浏览.png图像文件的用户来说,已经提供了非常实用的功能。未来,若开发者计划拓展插件支持的文件格式或适用于其他浏览器,则需要考虑到对现有代码的扩展和兼容性测试。 总结: "ImagesOnGitHub-crx"插件通过创新的用户体验设计,解决了GitHub在浏览图像文件时的一些局限性,使得图像浏览更加直观和便捷。尽管目前该插件存在一些限制,如仅支持.png格式和仅在Chrome浏览器中可用,但它为用户和开发者提供了良好的思路和实践。对于希望提高效率和增强功能的用户来说,这类工具扩展了GitHub的实用性,是开发人员工具箱中的一个有益补充。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【OPPO手机故障诊断专家】:工程指令快速定位与解决

![【OPPO手机故障诊断专家】:工程指令快速定位与解决](https://www.consumerelectronicstestdevelopment.com/media/2hlomnxy/oppo.jpg?anchor=center&mode=crop&width=1002&height=564&bgcolor=White&rnd=132773815380200000) # 摘要 本文综述了OPPO手机故障诊断的技术细节,涵盖了工程指令的基础理论、实践应用、高级技巧以及未来发展方向。首先介绍了工程指令的定义、分类、执行环境及其与手机系统交互的重要性。随后,深入探讨了工程指令在初步故障诊断
recommend-type

求[100,900]之间相差为12的素数对(注:要求素数对的两个素数均在该范围内)的个数

求解 [100, 900] 范围内相差为 12 的素数对,首先我们需要确定哪些数在这个区间内是素数。然后筛选出它们成对出现且差值为 12 的情况。 1. 确定素数范围内的素数:我们可以编写一个简单的程序来检查每个数字是否为素数,如果数字大于 1,并且除 2 到其平方根之间的所有整数都不能整除它,那么这个数字就是素数。 2. 遍历并寻找符合条件的素数对:从较大的素数开始向下遍历,找到的第一个素数作为“较大”素数,然后查看比它小 12 的下一个数,如果这个数也是素数,则找到了一对符合条件的素数。 3. 统计素数对的数量:统计在给定范围内找到的这种差距为 12 的素数对的数量。 由于计算素数
recommend-type

Android IPTV项目:直播频道的实时流媒体实现

资源摘要信息:"IPTV:直播IPTV的Android项目是一个基于Android平台的实时流式传输应用。该项目允许用户从M3U8或M3U格式的链接或文件中获取频道信息,并将这些频道以网格或列表的形式展示。用户可以在应用内选择并播放指定的频道。该项目的频道列表是从一个预设的列表中加载的,并且通过解析M3U或M3U8格式的文件来显示频道信息。开发者还计划未来更新中加入Exo播放器以及电子节目单功能,以增强用户体验。此项目使用了多种技术栈,包括Java、Kotlin以及Kotlin Android扩展。" 知识点详细说明: 1. IPTV技术: IPTV(Internet Protocol Television)即通过互联网协议提供的电视服务。它与传统的模拟或数字电视信号传输方式不同,IPTV通过互联网将电视内容以数据包的形式发送给用户。这种服务使得用户可以按需观看电视节目,包括直播频道、视频点播(VOD)、时移电视(Time-shifted TV)等。 2. Android开发: 该项目是针对Android平台的应用程序开发,涉及到使用Android SDK(软件开发工具包)进行应用设计和功能实现。Android应用开发通常使用Java或Kotlin语言,而本项目还特别使用了Kotlin Android扩展(Kotlin-Android)来优化开发流程。 3. 实时流式传输: 实时流式传输是指媒体内容以连续的流形式进行传输的技术。在IPTV应用中,实时流式传输保证了用户能够及时获得频道内容。该项目可能使用了HTTP、RTSP或其他流媒体协议来实现视频流的实时传输。 4. M3U/M3U8文件格式: M3U(Moving Picture Experts Group Audio Layer 3 Uniform Resource Locator)是一种常用于保存播放列表的文件格式。M3U8则是M3U格式的扩展版本,支持UTF-8编码,常用于苹果设备。在本项目中,M3U/M3U8文件被用来存储IPTV频道信息,如频道名称、视频流URL等。 5. Exo播放器: ExoPlayer是谷歌官方提供的一个开源视频播放器,专为Android优化。它支持多种特性,如自定义字幕、HDR视频播放、无缝直播等。ExoPlayer通常用于处理IPTV应用中的视频流媒体播放需求。 6. 电子节目单(EPG): 电子节目单是IPTV应用中一项重要功能,它为用户提供频道的节目指南,包括当前播放的节目以及未来节目的安排。电子节目单一般以网格或列表形式展示,方便用户浏览和搜索节目信息。 7. 开源贡献文化: 该项目提到了欢迎贡献者,表明这是一个开源项目。在开源文化中,开发者社区鼓励用户、开发者贡献代码来改进项目,这是一个共享知识、共同进步的过程。参与者通过贡献代码、报告问题或提供文档帮助等方式参与项目。 8. Kotlin编程语言: Kotlin是一种运行在Java虚拟机上的静态类型编程语言,它与Java完全兼容并可以无缝集成Java代码。Kotlin以其简洁、安全和富有表现力的特点被越来越多的Android开发者采用。在本项目中,使用Kotlin可以简化代码结构,提高开发效率和应用性能。 总结而言,本项目是一个面向Android平台的实时流媒体IPTV应用开发项目,它整合了实时流式传输、M3U/M3U8文件解析、Exo播放器使用、电子节目单功能等关键技术点,并在开源社区中寻求贡献者的参与。通过本项目,开发者可以深入了解如何在Android平台上实现IPTV服务,并学习到使用Kotlin和Java等编程语言进行Android应用开发的相关知识。