sample_id,feature0,feature1,feature2,feature3,feature4,feature5,feature6,feature7,feature8,feature9,feature10,feature11,feature12,feature13,feature14,feature15,feature16,feature17,feature18,feature19,feature20,feature21,feature22,feature23,feature24,feature25,feature26,feature27,feature28,feature29,feature30,feature31,feature32,feature33,feature34,feature35,feature36,feature37,feature38,feature39,feature40,feature41,feature42,feature43,feature44,feature45,feature46,feature47,feature48,feature49,feature50,feature51,feature52,feature53,feature54,feature55,feature56,feature57,feature58,feature59,feature60,feature61,feature62,feature63,feature64,feature65,feature66,feature67,feature68,feature69,feature70,feature71,feature72,feature73,feature74,feature75,feature76,feature77,feature78,feature79,feature80,feature81,feature82,feature83,feature84,feature85,feature86,feature87,feature88,feature89,feature90,feature91,feature92,feature93,feature94,feature95,feature96,feature97,feature98,feature99,feature100,feature101,feature102,feature103,feature104,feature105,feature106,label 帮我把这样的EXCEL数据读取到LSTM中进行分析,并可以推理出对应的label,使用pytorch实现,可以考虑pytorchtext,并帮我给出完整地代码(包括训练模型)
时间: 2023-07-26 09:04:14 浏览: 1588
Feature Selection with Fluid Mechanics Inspired Particle Swarm Optimization for Microarray Data
当处理这个问题的时候,我们可以使用PyTorch和torchtext库来读取和处理Excel数据,并使用LSTM模型进行分类。下面是一个用于读取数据、构建LSTM模型并进行训练的示例代码:
首先,确保已安装所需的库:PyTorch、torchtext、pandas和xlrd。可以使用以下命令进行安装:
```python
pip install torch torchtext pandas xlrd
```
接下来,使用以下代码读取Excel数据并准备数据集:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchtext
from torchtext.data import Field, TabularDataset, BucketIterator
# 定义字段
label_field = Field(sequential=False, use_vocab=False)
text_field = Field(sequential=True, lower=True)
fields = [('sample_id', None), ('feature0', text_field), ('feature1', text_field), ..., ('label', label_field)]
# 读取数据集
train_data, valid_data, test_data = TabularDataset.splits(
path='path_to_excel_file',
train='train_sheet_name',
validation='valid_sheet_name',
test='test_sheet_name',
format='excel',
fields=fields,
skip_header=True
)
# 构建词汇表
text_field.build_vocab(train_data)
# 创建迭代器
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=32,
sort_key=lambda x: len(x.feature0),
sort_within_batch=False,
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
)
```
然后,定义LSTM模型:
```python
class LSTMClassifier(nn.Module):
def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim):
super().__init__()
self.embedding = nn.Embedding(input_dim, embedding_dim)
self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, bidirectional=True)
self.fc = nn.Linear(hidden_dim * 2, output_dim)
self.dropout = nn.Dropout(0.5)
def forward(self, text):
embedded = self.embedding(text)
output, (hidden, cell) = self.rnn(embedded)
hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)
hidden = self.dropout(hidden)
return self.fc(hidden)
```
接下来,初始化模型并定义损失函数和优化器:
```python
# 初始化模型
INPUT_DIM = len(text_field.vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 256
OUTPUT_DIM = 2
model = LSTMClassifier(INPUT_DIM, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
```
然后,定义训练和评估函数:
```python
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
epoch_acc = 0
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.feature0)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
epoch_acc = 0
with torch.no_grad():
for batch in iterator:
predictions = model(batch.feature0)
loss = criterion(predictions, batch.label)
acc = binary_accuracy(predictions, batch.label)
epoch_loss += loss.item()
epoch_acc += acc.item()
return epoch_loss / len(iterator), epoch_acc / len(iterator)
def binary_accuracy(preds, y):
rounded_preds = torch.argmax(torch.softmax(preds, dim=1), dim=1)
correct = (rounded_preds == y).float()
acc = correct.sum() / len(correct)
return acc
```
最后,进行模型的训练和评估:
```python
N_EPOCHS = 10
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'model.pt')
print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}% | Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')
# 加载最佳模型并在测试集上进行评估
model.load_state_dict(torch.load('model.pt'))
test_loss, test_acc = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
```
这就是一个基本的LSTM模型的训练和评估过程。请将代码中的"path_to_excel_file"替换为Excel文件的路径,"train_sheet_name"、"valid_sheet_name"和"test_sheet_name"替换为你的训练、验证和测试数据所在的表格名称。
请注意,上述代码只是一个示例,你可能需要根据你的实际数据和需求进行适当的调整。希望对你有所帮助!
阅读全文