python操作resultym.csv数据表(有Date(YYYY/MM)、TotalPrice两列数据),数据表第一行为表头信息,数据表中前27行都有数据,以此为基础,python调用resultym.csv表进行操作:循环调用以resultym.csv为数据集构建的pytorch lstm预测模型(模型实现过程:读取csv表,然后将TotalPrice归一化,接着按照0.8划分训练集和测试集,然后将划分好的数据转为PyTorch张量,之后定义超参数和算法模型、优化器,最后训练模型),该模型能够根据Date值来预测TotalPrice值,然后将第一次预测出的y_test_pred赋值给B26、将第二次预测出的值赋给B27、将第三次预测出的值赋给B28,一直循环直到求出B50的数值。每预测出一个值就在表的最后一行插入一组数据,插入的数据为:Date插入的值按照前面的年月往下延(即按照2023/03、2023/04、2023/05········2025/01的顺序),TotalPrice插入的值定义为2222222.5。直到求出第50行的数值,脚本停止运行。

时间: 2023-12-06 16:44:33 浏览: 93
ZIP

Machine_Learning-Housing_grade_prediction_using_python:机器学习被广泛用于建立数据分析的预测模型。 数据集包含一个训练文件,我们使用该训练文件来训练算法以对测试文件进行预测。 该文件包含大约2500多个缺失值。 我们使用KNN插补来自动填充缺失的位置,以进行更好的预测。 用于训练机器的模型…

以下是实现该功能的代码: ```python import pandas as pd import numpy as np import torch import torch.nn as nn import torch.optim as optim # 读取csv表 df = pd.read_csv('resultym.csv') # 归一化TotalPrice列 df['TotalPrice'] = (df['TotalPrice'] - df['TotalPrice'].min()) / (df['TotalPrice'].max() - df['TotalPrice'].min()) # 划分训练集和测试集 train_size = int(len(df) * 0.8) train_df = df[:train_size] test_df = df[train_size:] # 转为PyTorch张量 train_x = torch.tensor(train_df['TotalPrice'].values).view(-1, 1, 1).float() train_y = torch.tensor(train_df['TotalPrice'].values).view(-1, 1, 1).float() test_x = torch.tensor(test_df['TotalPrice'].values).view(-1, 1, 1).float() test_y = torch.tensor(test_df['TotalPrice'].values).view(-1, 1, 1).float() # 定义超参数和算法模型、优化器 input_size = 1 output_size = 1 hidden_size = 32 num_layers = 2 learning_rate = 0.01 num_epochs = 100 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTM, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_() c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_() out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) out = self.fc(out[:, -1, :]) return out model = LSTM(input_size, hidden_size, num_layers, output_size) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): outputs = model(train_x) optimizer.zero_grad() loss = criterion(outputs, train_y) loss.backward() optimizer.step() if epoch % 10 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) # 循环预测并插入数据 for i in range(24): # 预测 with torch.no_grad(): x_test = torch.tensor(test_df['TotalPrice'].values[-1]).view(1, 1, 1).float() y_test_pred = model(x_test) y_test_pred = y_test_pred.item() # 将预测结果插入表中 date = pd.to_datetime(test_df['Date'].iloc[-1]) + pd.DateOffset(months=1) date_str = date.strftime('%Y/%m') new_row = pd.DataFrame({'Date': date_str, 'TotalPrice': 2222222.5}, index=[len(df)]) df = pd.concat([df, new_row], axis=0) test_df = df[train_size:] if i == 0: df.iloc[25-1]['TotalPrice'] = y_test_pred elif i == 1: df.iloc[26-1]['TotalPrice'] = y_test_pred elif i == 2: df.iloc[27-1]['TotalPrice'] = y_test_pred elif i == 3: df.iloc[28-1]['TotalPrice'] = y_test_pred elif i == 4: df.iloc[29-1]['TotalPrice'] = y_test_pred elif i == 5: df.iloc[30-1]['TotalPrice'] = y_test_pred elif i == 6: df.iloc[31-1]['TotalPrice'] = y_test_pred elif i == 7: df.iloc[32-1]['TotalPrice'] = y_test_pred elif i == 8: df.iloc[33-1]['TotalPrice'] = y_test_pred elif i == 9: df.iloc[34-1]['TotalPrice'] = y_test_pred elif i == 10: df.iloc[35-1]['TotalPrice'] = y_test_pred elif i == 11: df.iloc[36-1]['TotalPrice'] = y_test_pred elif i == 12: df.iloc[37-1]['TotalPrice'] = y_test_pred elif i == 13: df.iloc[38-1]['TotalPrice'] = y_test_pred elif i == 14: df.iloc[39-1]['TotalPrice'] = y_test_pred elif i == 15: df.iloc[40-1]['TotalPrice'] = y_test_pred elif i == 16: df.iloc[41-1]['TotalPrice'] = y_test_pred elif i == 17: df.iloc[42-1]['TotalPrice'] = y_test_pred elif i == 18: df.iloc[43-1]['TotalPrice'] = y_test_pred elif i == 19: df.iloc[44-1]['TotalPrice'] = y_test_pred elif i == 20: df.iloc[45-1]['TotalPrice'] = y_test_pred elif i == 21: df.iloc[46-1]['TotalPrice'] = y_test_pred elif i == 22: df.iloc[47-1]['TotalPrice'] = y_test_pred elif i == 23: df.iloc[48-1]['TotalPrice'] = y_test_pred # 更新测试集 test_x = torch.tensor(test_df['TotalPrice'].values).view(-1, 1, 1).float() test_y = torch.tensor(test_df['TotalPrice'].values).view(-1, 1, 1).float() # 更新模型 for epoch in range(num_epochs): outputs = model(train_x) optimizer.zero_grad() loss = criterion(outputs, train_y) loss.backward() optimizer.step() print("Prediction %d: %1.5f" % (i+1, y_test_pred)) ``` 在代码中,我们首先读取了resultym.csv表,并对其中的TotalPrice列进行归一化处理。然后按照0.8的比例将数据集划分为训练集和测试集,并将它们转为PyTorch张量。接着定义了LSTM模型、损失函数和优化器,并进行了模型训练。 接着进入循环预测并插入数据的步骤。我们首先用训练好的模型对测试集中的最后一个数据进行预测,得到预测结果y_test_pred。然后将预测结果插入到表中,在插入前需要通过pd.to_datetime函数将之前的日期字符串转为datetime类型,并使用pd.DateOffset函数往后推一个月,得到新的日期字符串。插入的数据为{'Date': date_str, 'TotalPrice': 2222222.5},其中TotalPrice固定为2222222.5。然后根据预测结果更新表中对应的TotalPrice值。最后更新测试集,重新训练模型,并打印出当前的预测结果。 需要注意的是,我们在更新表中的TotalPrice值时,需要根据具体的行数来更新,因此使用了一长串的if-elif语句。如果有更好的方法,可以自行修改。
阅读全文

相关推荐

export default { namespaced: true, // 模块的 state 数据,其中JSON.parse()方法用于将JSON字符串转换为JavaScript对象 state: () => ({ cart: JSON.parse(uni.getStorageSync('cart') || '[]'), }), mutations: { addToCart(state, goods) { const finResult = state.cart.find(x => x.id === goods.id) if (!finResult) { state.cart.push(goods) } else { finResult.count++ } this.commit('m_cart/saveToStorage') }, saveToStorage(state) { uni.setStorageSync('cart', JSON.stringify(state.cart)) }, //更新购物车中商品的勾选状态 updateGoodsState(state, item) { const findResult = state.cart.find(x => x.id === item.id) if (findResult) { findResult.state = item.state this.commit('m_cart/saveToStorage') } }, //更新商品的数量 updateGoodsCount(state, item) { const findResult = state.cart.find(x => x.id === item.id) if (findResult) { findResult.count = item.count this.commit('m_cart/saveToStorage') } }, // 根据 Id 从购物车中删除对应的商品信息 removeGoodsByid(state, ...goods) { // 调用数组的 filter 方法进行过滤 for (let k of goods[0]) { state.cart = state.cart.filter(x => x.id !== k) } // 持久化存储到本地 this.commit('m_cart/saveToStorage') }, //根据id删除对应的商品 removeGoodsById(state, id) { state.cart = state.cart.filter(x => x.id !== id) this.commit('m_cart/saveToStorage') }, //更新购物车商品 updateAllGoodsState(state, newState) { state.cart.forEach(x => x.state = newState) this.commit('m_cart/saveToStorage') } }, // 根据 Id 从购物车中删除对应的商品信息 removeGoodsById(state, ...goods) { // 调用数组的 filter 方法进行过滤 for (let k of goods[0]) { state.cart = state.cart.filter(x => x.id !== k) } // 持久化存储到本地 this.commit('m_cart/saveToStorage') }, // 模块的 getters 属性 getters: { //购物车中所以商品的总数量 total(state) { // let c = 0 // state.cart.forEach(x => c += x.count) // return c retu

import requests from bs4 import BeautifulSoup import openpyxl class LianJiaSpider(): def __init__(self): self.url = 'https://bj.lianjia.com/ershoufang/pg{0}/' self.headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36 SLBrowser/8.0.0.12022 SLBChan/109'} def send_request(self, url): resp = requests.get(url, headers=self.headers) if resp.status_code == 200: return resp def parse_html(self, resp): lst = [] html = resp.text bs = BeautifulSoup(html, 'lxml') ul = bs.find('ul', class_='sellListContent') li_list = ul.find_all('li') for item in li_list: title = item.find('div', class_='title').text positionInfo = item.find('div', class_='positionInfo').text address = item.find('div', class_='address').text followInfo = item.find('div', class_='followInfo').text tag = item.find('div', class_='tag').text totalPrice = item.find('div', class_='totalPrice totalPrice2').text unitPrice = item.find('div', class_='unitPrice').text # print(unitPrice) lst.append((title, positionInfo, address, followInfo, tag, totalPrice, unitPrice)) print(lst) self.save(lst) def save(self, lst): wb = openpyxl.Workbook() sheet = wb.active for row in lst: sheet.append(row) continue wb.save('D:/爬虫/链家.csv') def start(self): for i in range(1, 5): full_url = self.url.format(i) resp = self.send_request(full_url) #print(resp.text) self.parse_html(resp) if __name__ == '__main__': lianjia = LianJiaSpider() lianjia.start()使用以上代码爬取数据保存到文件中只显示最后一页30条数据,前面页码的数据都被覆盖了,如何更改

最新推荐

recommend-type

动态添加表格数据(jQuery、Vue)

这里假设有一个表格,用户可以查看并编辑图书信息,包括书籍名称、作者、出版日期、价格和购买数量。 #### 2. 参考代码 ```javascript var books = [ {id: 1, author: '小明', name: '小明去哪了', date: '????-??...
recommend-type

数据字典.doc数据字典.doc

1. **数据表描述**: - **图书图书信息表**:存储关于图书的基本信息,包括ID、名称、作者、ISBN条形码、出版社ID、入库日期和库存。 - **库存**:图书的现有数量,用于跟踪库存管理。 - **管理员状态**:描述...
recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。