with torch.no_grad(): for val_data in validate_loader: val_images, val_labels = val_data outputs = net(val_images.to(device)) # eval model only have last output layer loss = loss_function(outputs, val_labels.to(device)) val_loss += loss.item() predict_y = torch.max(outputs, dim=1)[1] acc += (predict_y == val_labels.to(device)).sum().item() val_accurate = acc / val_num val_loss = val_loss /val_num if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) print('[epoch %d] train_loss: %.3f test_loss: %.3f test_accuracy: %.3f' % (epoch + 1, running_loss / step, val_loss, val_accurate)) print('Finished Training')
时间: 2024-03-31 10:38:48 浏览: 136
pytorch 状态字典:state_dict使用详解
5星 · 资源好评率100%
这段代码用于在验证集上评估模型的表现,并保存表现最好的模型。
首先,我们使用with torch.no_grad()语句块来关闭梯度计算,以便在验证过程中不产生梯度。然后,我们遍历验证集中的所有mini-batch,对每个mini-batch进行预测,并计算预测结果和标签数据之间的损失函数值。
接着,我们累加当前mini-batch中的损失函数值到val_loss中,并统计当前mini-batch中正确分类的样本数,并将其累加到acc中,以便后续计算平均准确率。
在验证过程中,我们使用torch.max函数找到模型输出中概率最大的类别,并将其作为预测结果。然后,我们将预测结果和标签数据进行比较,统计正确分类的样本数。
在每个epoch结束后,我们计算当前模型在验证集上的平均准确率val_accurate和平均损失val_loss,并将其输出到屏幕上。如果当前模型在验证集上的表现优于之前的最佳表现,则将当前模型保存到指定的路径save_path中。
最后,我们输出"Finished Training"表示训练过程结束。
阅读全文