def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay, print_cost=True, isPlot=True): # 加载数据集并分割batch train_loader = data.DataLoader(train_dataset, batch_size) # 构建模型 model = FaceCNN() # 加载模型 # model = torch.load('./model/model-best.pth') model.to(device) # 损失函数和优化器 compute_loss = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay) loss_values = [] train_acc_values = [] val_acc_values = [] for epoch in range(epochs): loss = 0 model.train() model = model.to(device) for images, labels in train_loader: optimizer.zero_grad() # 梯度清零 outputs = model.forward(images.to(device)) loss = compute_loss(outputs, labels.to(device)) loss.backward() # 更新参数 optimizer.step() # 打印损失值 if print_cost: print('epoch{}: train_loss:'.format(epoch + 1), loss.item()) # 评估模型准确率 if epoch != 0: model.eval() acc_train = validate(model, train_dataset, batch_size) acc_val = validate(model, val_dataset, batch_size) print('acc_train: %.1f %%' % (acc_train * 100)) print('acc_val: %.1f %%' % (acc_val * 100)) train_acc_values.append(acc_train) val_dataset.append(acc_val) loss_values.append(loss.item()) if isPlot: plt.plot(loss_values, label='损失') plt.plot(train_acc_values, label='训练准确率') plt.plot(val_acc_values, label='验证准确率') plt.xlabel('Epoch') plt.ylabel('Value') plt.legend() plt.show() return model
时间: 2024-04-18 17:23:20 浏览: 128
这段代码是用来训练一个模型的函数。它接受训练集、验证集、批次大小、训练轮数、学习率、权重衰减等参数。函数首先加载训练集并构建一个模型对象。然后,定义了损失函数和优化器。接下来,函数通过循环迭代每个训练轮次,并在每轮中计算损失、更新参数,并打印损失值。如果 `print_cost` 参数设置为 True,则会打印出每个训练轮次的损失值。
在每个训练轮次结束后,函数会评估模型在训练集和验证集上的准确率,并打印出来。这里调用了之前定义的 `validate` 函数来计算准确率。
最后,函数可以选择绘制损失值、训练准确率和验证准确率的图像,并返回训练好的模型对象。
需要注意的是,这段代码中使用了一些常见的深度学习库函数和对象,如 PyTorch 的 DataLoader、CrossEntropyLoss、SGD 优化器等。此外,函数中还调用了之前定义的 `validate` 函数和一些绘图函数。
如果你还有其他问题或需要进一步解释,请随时告诉我!
相关问题
def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay, print_cost=True, isPlot=True): # 加载数据集并分割batch train_loader = data.DataLoader(train_dataset, batch_size) # x = data.DataLoader(train_dataset) # x_train_label, y_train_label = train_test_split(x, test_size = 0.2, stratify=y, shuffle=True) # 构建模型 model = FaceCNN() # 加载模型 # model = torch.load('./model/model.pth') model.to(device) # 损失函数和优化器 compute_loss = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay) # 学习率衰减 # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8) for epoch in range(epochs): loss = 0 model.train() model = model.to(device) for images, labels in train_loader: optimizer.zero_grad() outputs = model.forward(images.to(device)) loss = compute_loss(outputs, labels.to(device)) loss.backward() optimizer.step() # 打印损失值 if print_cost: print('epoch{}: train_loss:'.format(epoch + 1), loss.item()) # 评估模型准确率 if epoch % 10 == 9: model.eval() acc_train = validate(model, train_dataset, batch_size) acc_val = validate(model, val_dataset, batch_size) print('acc_train: %.1f %%' % (acc_train * 100)) print('acc_val: %.1f %%' % (acc_val * 100)) return model
这段代码实现了一个训练函数 `train()`,用于训练一个人脸表情识别模型。具体步骤如下:
1. 加载数据集并分割 batch:使用 `DataLoader` 将训练数据集 `train_dataset` 加载,并按照指定的 `batch_size` 进行分割,得到一个数据加载器 `train_loader`。
2. 构建模型:创建一个人脸表情识别模型 `FaceCNN` 的实例。
3. 将模型移动到设备:将模型移动到指定的设备上,通常是 GPU 设备。
4. 定义损失函数和优化器:使用交叉熵损失函数和随机梯度下降(SGD)优化器。
5. 进行训练循环:按照指定的 `epochs` 进行训练循环,在每个 epoch 中,遍历训练数据集的每个 batch。
6. 清除梯度:在每个 batch 的训练之前,使用 `optimizer.zero_grad()` 清除模型参数的梯度。
7. 前向传播和计算损失:通过模型的前向传播获取预测结果,并计算预测结果与真实标签之间的交叉熵损失。
8. 反向传播和参数更新:通过调用 `loss.backward()` 进行反向传播,计算参数的梯度,并使用 `optimizer.step()` 更新模型的参数。
9. 打印损失值:如果 `print_cost` 参数为 True,在每个 epoch 完成后打印当前 epoch 的训练损失。
10. 评估模型准确率:如果当前 epoch 的索引是 9 的倍数,即每 10 个 epoch,使用验证集 `val_dataset` 对模型进行评估,并打印训练集和验证集的准确率。
11. 返回训练好的模型。
通过这些步骤,代码实现了对人脸表情识别模型进行训练的过程,包括模型的构建、损失函数的定义、优化器的设置、训练循环的执行和模型参数的更新。
(mypytorch) C:\Users\as729>yolo detect train data=C:/Users/as729/ultralytics/ultralytics/datasets/new.yaml model=C:/ultralytics/ultralytics/weights/yolov8s.pt epochs=150 imgsz=640 batch=16 patience=150 project=C:/ultralytics/runs/visdrone name=yolov8s Ultralytics YOLOv8.0.139 Python-3.9.17 torch-2.0.1 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB) engine\trainer: task=detect, mode=train, model=C:/ultralytics/ultralytics/weights/yolov8s.pt, data=C:/Users/as729/ultralytics/ultralytics/datasets/new.yaml, epochs=150, patience=150, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=C:/ultralytics/runs/visdrone, name=yolov8s, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=C:\ultralytics\runs\visdrone\yolov8s5 Traceback (most recent call last): File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\trainer.py", line 123, in __init__ self.data = check_det_dataset(self.args.data) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\data\utils.py", line 196, in check_det_dataset data = check_file(dataset) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\utils\checks.py", line 330, in check_file raise FileNotFoundError(f"'{file}' does not exist") FileNotFoundError: 'C:/Users/as729/ultralytics/ultralytics/datasets/new.yaml' does not exist The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\as729\.conda\envs\mypytorch\lib\runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\as729\.conda\envs\mypytorch\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "C:\Users\as729\.conda\envs\mypytorch\Scripts\yolo.exe\__main__.py", line 7, in <module> File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\cfg\__init__.py", line 410, in entrypoint getattr(model, mode)(**overrides) # default args from model File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\model.py", line 367, in train self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks) File "C:\Users\as729\.conda\envs\mypytorch\lib\site-packages\ultralytics\engine\trainer.py", line 127, in __init__ raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'C:\Users\as729\ultralytics\ultralytics\datasets\new.yaml' error 'C:/Users/as729/ultralytics/ultralytics/datasets/new.yaml' does not exist
如果你确定文件的绝对路径是正确的,但仍然找不到文件,有几个可能的原因:
1. 文件确实不存在:再次确认文件是否存在于指定的路径。你可以手动浏览到该路径,并验证文件是否存在。如果文件确实不存在,你需要创建或获取正确的文件。
2. 文件权限问题:确保你有足够的权限来访问该文件。在某些情况下,你可能需要以管理员身份运行程序或更改文件的权限设置。
3. 文件路径格式错误:确保文件路径中的斜杠是正斜杠(/),而不是反斜杠(\)。确保驱动器名和文件名正确拼写。
4. 工作目录问题:如果你使用相对路径,文件的位置相对于当前的工作目录。请确保程序的当前工作目录与你期望的一致。你可以使用`os.getcwd()`函数来获取当前工作目录,并使用`os.chdir()`函数来更改工作目录。
如果上述步骤都没有解决问题,请提供更多详细信息,例如操作系统、代码示例和完整的错误消息,以便我能够更好地帮助你解决问题。
阅读全文
相关推荐















