已有名为model的模型,给出训练代码,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-06-29 15:18:08 浏览: 201
这里是一个简单的训练代码,假设您已经定义了名为 `model` 的模型:
```python
import os
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from dataset import MyDataset
from loss import DiceLoss
from metric import dice_coef
from tqdm import tqdm
# 定义数据转换
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
# 定义数据集
train_set = MyDataset('data/train/trainvol', 'data/train/trainseg', transform=transform)
val_set = MyDataset('data/val/valvol', 'data/val/valseg', transform=transform)
# 定义数据加载器
train_loader = DataLoader(train_set, batch_size=4, shuffle=True)
val_loader = DataLoader(val_set, batch_size=4, shuffle=False)
# 定义优化器和损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = DiceLoss()
# 定义训练函数
def train(model, train_loader, optimizer, criterion, epoch):
model.train()
train_loss = 0.0
train_dice = 0.0
for images, labels in tqdm(train_loader, desc=f'Train Epoch {epoch}'):
images, labels = images.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
train_dice += dice_coef(outputs, labels) * images.size(0)
train_loss /= len(train_loader.dataset)
train_dice /= len(train_loader.dataset)
print(f'Train Loss: {train_loss:.4f}, Train Dice: {train_dice:.4f}')
# 定义验证函数
def validate(model, val_loader, criterion, epoch):
model.eval()
val_loss = 0.0
val_dice = 0.0
with torch.no_grad():
for images, labels in tqdm(val_loader, desc=f'Val Epoch {epoch}'):
images, labels = images.cuda(), labels.cuda()
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss.item() * images.size(0)
val_dice += dice_coef(outputs, labels) * images.size(0)
val_loss /= len(val_loader.dataset)
val_dice /= len(val_loader.dataset)
print(f'Val Loss: {val_loss:.4f}, Val Dice: {val_dice:.4f}')
# 开始训练
num_epochs = 10
for epoch in range(1, num_epochs+1):
train(model, train_loader, optimizer, criterion, epoch)
validate(model, val_loader, criterion, epoch)
```
代码中,我们首先导入必要的库,包括 `os`、`torch`、`torchvision`、`transforms`、`DataLoader`、`MyDataset`、`DiceLoss`、`dice_coef` 和 `tqdm`。然后,我们定义了数据转换、训练集和验证集的 `MyDataset` 对象,以及训练和验证数据的 `DataLoader` 对象。接下来,我们定义了优化器和损失函数,分别为 Adam 和 DiceLoss。最后,我们定义了训练和验证函数,分别用于训练和验证模型。在训练和验证过程中,我们还使用了 `tqdm` 模块来显示进度条。最后,我们使用一个简单的 for 循环来训练模型,并指定了训练的 epoch 数量。
阅读全文