对定义好的UNET网络model进行训练代码,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-06-29 08:17:55 浏览: 79
好的,以下是一个基本的UNET模型训练代码,包含了加载数据集、定义模型、定义损失函数、定义优化器、训练模型、评估模型和保存模型等步骤。你需要根据具体情况进行调整和修改。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from dataset import CustomDataset
from model import UNet
# 设置超参数
batch_size = 8
learning_rate = 0.001
epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载数据集
train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor()
])
val_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
train_dataset = CustomDataset("data/train/trainvol", "data/train/trainseg", transform=train_transforms)
val_dataset = CustomDataset("data/val/valvol", "data/val/valseg", transform=val_transforms)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size)
# 定义模型
model = UNet().to(device)
# 定义损失函数和优化器
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(epochs):
train_loss = 0.0
val_loss = 0.0
model.train()
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
train_loss /= len(train_loader.dataset)
model.eval()
with torch.no_grad():
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss.item() * images.size(0)
val_loss /= len(val_loader.dataset)
print("Epoch: {} Training Loss: {:.6f} Validation Loss: {:.6f}".format(epoch+1, train_loss, val_loss))
# 保存模型
torch.save(model.state_dict(), "unet.pt")
```
其中,`CustomDataset`是自定义的数据集类,用于加载训练集和验证集数据;`UNet`是定义的UNET模型类;`BCEWithLogitsLoss`是PyTorch提供的二分类交叉熵损失函数。你需要根据具体情况进行修改和调整。
阅读全文