给出训练名为model的模型的代码,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-06-29 21:18:01 浏览: 90
这是一个基于 TensorFlow 框架的示例代码,用于训练一个 U-Net 模型进行图像分割任务。代码中使用的数据集是 BraTS 2018 数据集,包含原始 MRI 图像和对应的肿瘤分割标签。
```python
import tensorflow as tf
import numpy as np
import os
# 定义 U-Net 模型
def unet(input_shape=(240, 240, 4)):
inputs = tf.keras.layers.Input(shape=input_shape)
conv1 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = tf.keras.layers.Dropout(0.5)(conv4)
pool4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = tf.keras.layers.Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = tf.keras.layers.Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = tf.keras.layers.Dropout(0.5)(conv5)
up6 = tf.keras.layers.Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(drop5))
merge6 = tf.keras.layers.concatenate([drop4, up6], axis=3)
conv6 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = tf.keras.layers.Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv6))
merge7 = tf.keras.layers.concatenate([conv3, up7], axis=3)
conv7 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = tf.keras.layers.Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv7))
merge8 = tf.keras.layers.concatenate([conv2, up8], axis=3)
conv8 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = tf.keras.layers.Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
tf.keras.layers.UpSampling2D(size=(2, 2))(conv8))
merge9 = tf.keras.layers.concatenate([conv1, up9], axis=3)
conv9 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = tf.keras.layers.Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = tf.keras.layers.Conv2D(1, 1, activation='sigmoid')(conv9)
model = tf.keras.Model(inputs=inputs, outputs=conv10)
return model
# 定义训练和验证数据集
train_image_dir = 'data/train/trainvol'
train_label_dir = 'data/train/trainseg'
val_image_dir = 'data/val/valvol'
val_label_dir = 'data/val/valseg'
train_image_paths = sorted([os.path.join(train_image_dir, fname) for fname in os.listdir(train_image_dir) if fname.endswith('.nii.gz')])
train_label_paths = sorted([os.path.join(train_label_dir, fname) for fname in os.listdir(train_label_dir) if fname.endswith('.nii.gz')])
val_image_paths = sorted([os.path.join(val_image_dir, fname) for fname in os.listdir(val_image_dir) if fname.endswith('.nii.gz')])
val_label_paths = sorted([os.path.join(val_label_dir, fname) for fname in os.listdir(val_label_dir) if fname.endswith('.nii.gz')])
# 定义数据加载函数
def load_data(image_path, label_path):
image = nib.load(image_path).get_fdata()
label = nib.load(label_path).get_fdata()
label[label > 0] = 1
image = np.transpose(image, (2, 0, 1)) # 将通道维度放在最前面
label = np.transpose(label, (2, 0, 1))
image = np.expand_dims(image, axis=-1) # 增加一个通道维度
label = np.expand_dims(label, axis=-1)
return image, label
# 定义训练数据生成器
def train_generator():
for i in range(len(train_image_paths)):
image_path = train_image_paths[i]
label_path = train_label_paths[i]
image, label = load_data(image_path, label_path)
yield image, label
# 定义验证数据生成器
def val_generator():
for i in range(len(val_image_paths)):
image_path = val_image_paths[i]
label_path = val_label_paths[i]
image, label = load_data(image_path, label_path)
yield image, label
# 定义训练参数
batch_size = 4
epochs = 50
steps_per_epoch = len(train_image_paths) // batch_size
validation_steps = len(val_image_paths) // batch_size
# 编译模型
model = unet()
model.compile(optimizer=tf.keras.optimizers.Adam(), loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(train_generator(), epochs=epochs, steps_per_epoch=steps_per_epoch,
validation_data=val_generator(), validation_steps=validation_steps)
# 保存模型
model.save('model.h5')
```
在这段代码中,我们首先定义了一个 U-Net 模型,然后使用 BraTS 2018 数据集的 MRI 图像和肿瘤分割标签进行训练。训练和验证数据集的路径分别为 `train_image_dir`、`train_label_dir`、`val_image_dir` 和 `val_label_dir`,我们使用相应的路径读取数据,并将其转换为模型输入和标签。然后,我们定义了训练和验证数据生成器,可以在训练过程中动态地生成数据。最后,我们使用 `fit` 方法训练模型,并将训练好的模型保存到 `model.h5` 文件中。
阅读全文