给出IDLE UNET分割代码,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-06-29 17:16:46 浏览: 97
好的,这里给您提供一个简单的IDLE UNET分割代码,您可以根据自己的需要进行修改和优化。以下代码基于Python和PyTorch框架实现,需要安装相关的库和环境才能正常运行。
首先,需要导入相关的库和定义一些超参数:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from dataset import SegmentationDataset
from model import IDLE_UNET
# 定义超参数
batch_size = 2
epochs = 10
learning_rate = 0.001
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```
然后,需要定义数据加载器和数据预处理函数:
```python
# 定义数据预处理函数
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
# 加载训练集和验证集
train_dataset = SegmentationDataset('data/train/trainvol', 'data/train/trainseg', transform)
val_dataset = SegmentationDataset('data/val/valvol', 'data/val/valseg', transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
```
接着,需要定义模型、损失函数和优化器:
```python
# 定义模型、损失函数和优化器
model = IDLE_UNET().to(device)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
```
最后,进行模型训练和验证:
```python
# 模型训练和验证
for epoch in range(epochs):
train_loss = 0.0
val_loss = 0.0
# 训练模型
model.train()
for i, (inputs, targets) in enumerate(train_loader):
inputs = inputs.to(device)
targets = targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
# 验证模型
model.eval()
for i, (inputs, targets) in enumerate(val_loader):
inputs = inputs.to(device)
targets = targets.to(device)
with torch.no_grad():
outputs = model(inputs)
loss = criterion(outputs, targets)
val_loss += loss.item() * inputs.size(0)
train_loss /= len(train_dataset)
val_loss /= len(val_dataset)
print('Epoch: {} Train Loss: {:.6f} Val Loss: {:.6f}'.format(epoch+1, train_loss, val_loss))
```
以上就是一个简单的IDLE UNET分割代码示例,您可以根据自己的需要进行修改和扩展。注意,这里还需要定义数据集类和模型类,具体实现方法可以参考PyTorch官方文档和相关教程。
阅读全文