IDLE SHELL写UNET代码,其中数据集data,子文件为训练集train,验证集val,训练集子文件为图像文件trainvol,标签文件trainseg,验证集子文件为图像文件valvol,标签文件valseg
时间: 2024-02-03 21:12:25 浏览: 111
假设你已经安装好了PyTorch和torchvision,并且已经将数据集文件夹“data”放在了当前目录下,那么你可以按照以下步骤编写UNET代码:
1. 导入必要的库和模块:
```python
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from dataset import UNetDataset
from model import UNet
```
2. 定义数据预处理的transforms:
```python
train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=15),
transforms.ToTensor()
])
val_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
```
3. 创建训练集和验证集的dataset:
```python
train_dataset = UNetDataset(data_dir='data/train',
img_dir='trainvol',
mask_dir='trainseg',
transform=train_transforms)
val_dataset = UNetDataset(data_dir='data/val',
img_dir='valvol',
mask_dir='valseg',
transform=val_transforms)
```
4. 创建训练集和验证集的dataloader:
```python
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False)
```
5. 创建UNet模型:
```python
model = UNet()
```
6. 定义损失函数和优化器:
```python
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
7. 训练模型:
```python
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
val_loss = 0.0
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
model.eval()
for batch_idx, (data, target) in enumerate(val_loader):
output = model(data)
loss = criterion(output, target)
val_loss += loss.item() * data.size(0)
train_loss /= len(train_dataset)
val_loss /= len(val_dataset)
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch+1, train_loss, val_loss))
```
8. 至此,你已经完成了UNET模型的训练,可以使用该模型对新的图像进行分割了。
阅读全文