设计一段IDLE UNET分割代码,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-09-16 12:12:26 浏览: 166
以下是一个简单的IDLE UNET分割代码示例,实现了对训练集和验证集的数据读取、模型训练和评估:
```python
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate
# 设置训练集和验证集的路径
train_vol_path = "data/train/trainvol"
train_seg_path = "data/train/trainseg"
val_vol_path = "data/val/valvol"
val_seg_path = "data/val/valseg"
# 定义IDLE UNET模型
def IDLE_UNET(input_size=(256, 256, 1)):
inputs = Input(input_size)
# 编码器
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
# 解码器
up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
return model
# 加载训练数据
train_vol = []
train_seg = []
for filename in os.listdir(train_vol_path):
if filename.endswith(".npy"):
vol = np.load(os.path.join(train_vol_path, filename))
seg = np.load(os.path.join(train_seg_path, filename))
train_vol.append(vol)
train_seg.append(seg)
train_vol = np.array(train_vol)
train_seg = np.array(train_seg)
# 加载验证数据
val_vol = []
val_seg = []
for filename in os.listdir(val_vol_path):
if filename.endswith(".npy"):
vol = np.load(os.path.join(val_vol_path, filename))
seg = np.load(os.path.join(val_seg_path, filename))
val_vol.append(vol)
val_seg.append(seg)
val_vol = np.array(val_vol)
val_seg = np.array(val_seg)
# 训练模型
model = IDLE_UNET()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_vol, train_seg, batch_size=4, epochs=10, validation_data=(val_vol, val_seg))
# 评估模型
results = model.evaluate(val_vol, val_seg, batch_size=4)
print("Validation loss:", results[0])
print("Validation accuracy:", results[1])
```
请注意,以上代码只是一个简单的示例,具体实现可能需要根据您的数据集和任务进行调整。同时,您需要确保训练集和验证集的数据格式与代码中的数据读取方式一致,否则会出现错误。
阅读全文