用IDLE写一段UNET代码,其中训练集图像在路 data/train/trainvol中,训练集标签在 data/train/trainseg中,验证集图像在 data/val/valvol中,验证集标签在 data/val/valseg中,所有数据均为png格式
时间: 2023-12-27 07:03:14 浏览: 77
这里是一个简单的UNet代码示例,其中包含了训练、验证和预测的过程:
```python
import os
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
# 定义UNet模型
def unet(input_size=(256, 256, 1)):
inputs = Input(input_size)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same')(merge6)
conv6 = Conv2D(512, 3, activation='relu', padding='same')(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same')(merge7)
conv7 = Conv2D(256, 3, activation='relu', padding='same')(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same')(merge8)
conv8 = Conv2D(128, 3, activation='relu', padding='same')(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same')(merge9)
conv9 = Conv2D(64, 3, activation='relu', padding='same')(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same')(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
return model
# 定义训练参数
train_dir = 'data/train'
val_dir = 'data/val'
batch_size = 8
epochs = 50
input_size = (256, 256, 1)
# 定义数据增强器
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
# 加载训练集和验证集数据
train_gen = train_datagen.flow_from_directory(
train_dir,
target_size=input_size[:2],
color_mode='grayscale',
batch_size=batch_size,
class_mode='input',
shuffle=True)
val_gen = val_datagen.flow_from_directory(
val_dir,
target_size=input_size[:2],
color_mode='grayscale',
batch_size=batch_size,
class_mode='input',
shuffle=True)
# 定义模型
model = unet(input_size)
# 编译模型
model.compile(optimizer=Adam(learning_rate=1e-4),
loss='binary_crossentropy',
metrics=['accuracy'])
# 定义回调函数
checkpoint = ModelCheckpoint('unet.h5', monitor='val_loss', save_best_only=True)
# 训练模型
history = model.fit(train_gen,
epochs=epochs,
validation_data=val_gen,
callbacks=[checkpoint])
# 预测图像
test_images = [...] # 定义测试集图像路径
test_data = []
for path in test_images:
image = imageio.imread(path)
image = np.expand_dims(image, axis=-1)
image = image / 255.0
test_data.append(image)
test_data = np.array(test_data)
predictions = model.predict(test_data)
# 保存预测结果
for i, pred in enumerate(predictions):
imageio.imwrite(f"prediction_{i}.png", pred)
```
其中,定义了一个名为`unet`的函数,用于创建UNet模型。在训练过程中,使用了ImageDataGenerator来进行数据增强,并通过flow_from_directory方法加载训练集和验证集数据。在模型训练完成后,可以使用预测功能对新的图像进行分割,并将预测结果保存为图像文件。
阅读全文