用IDLE写一段UNET代码,其中训练集图像文件路 径为data/train/trainvol,训练集标签文件路径为 data/train/trainseg,验证集图像文件路径为 data/val/valvol,验证集标签路径为 data/val/valseg,测试集为data/test,所有数据文件均为png格式
时间: 2023-10-15 09:05:32 浏览: 175
数据集包括训练集和测试集
以下是使用Keras框架实现的UNET代码,包括数据读取、模型构建、训练和测试等部分:
```python
import os
import numpy as np
import imageio
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate
from keras.optimizers import Adam
# 定义UNET模型
def unet(input_size=(256, 256, 1)):
inputs = Input(input_size)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
return model
# 加载训练集数据
def load_train_data():
train_images_dir = 'data/train/trainvol'
train_labels_dir = 'data/train/trainseg'
train_images = os.listdir(train_images_dir)
train_data = []
train_labels = []
for image_name in train_images:
image_path = os.path.join(train_images_dir, image_name)
label_path = os.path.join(train_labels_dir, image_name.replace('.png', '_seg.png'))
image = imageio.imread(image_path)
label = imageio.imread(label_path)
image = np.expand_dims(image, axis=-1)
label = np.expand_dims(label, axis=-1)
image = image / 255.0
label = label / 255.0
train_data.append(image)
train_labels.append(label)
train_data = np.array(train_data)
train_labels = np.array(train_labels)
return train_data, train_labels
# 加载验证集数据
def load_val_data():
val_images_dir = 'data/val/valvol'
val_labels_dir = 'data/val/valseg'
val_images = os.listdir(val_images_dir)
val_data = []
val_labels = []
for image_name in val_images:
image_path = os.path.join(val_images_dir, image_name)
label_path = os.path.join(val_labels_dir, image_name.replace('.png', '_seg.png'))
image = imageio.imread(image_path)
label = imageio.imread(label_path)
image = np.expand_dims(image, axis=-1)
label = np.expand_dims(label, axis=-1)
image = image / 255.0
label = label / 255.0
val_data.append(image)
val_labels.append(label)
val_data = np.array(val_data)
val_labels = np.array(val_labels)
return val_data, val_labels
# 训练UNET模型
def train():
model = unet()
adam = Adam(lr=1e-4)
model.compile(optimizer=adam, loss='binary_crossentropy', metrics=['accuracy'])
train_data, train_labels = load_train_data()
val_data, val_labels = load_val_data()
model.fit(train_data, train_labels, batch_size=16, epochs=50, validation_data=(val_data, val_labels))
model.save_weights('model_weights.h5')
# 测试UNET模型
def test():
model = unet()
model.load_weights('model_weights.h5')
test_images_dir = 'data/test'
test_images = os.listdir(test_images_dir)
test_data = []
for image_name in test_images:
image_path = os.path.join(test_images_dir, image_name)
image = imageio.imread(image_path)
image = np.expand_dims(image, axis=-1)
image = image / 255.0
test_data.append(image)
test_data = np.array(test_data)
predictions = model.predict(test_data)
# 将预测结果保存为图像文件
output_dir = 'predictions'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for i in range(len(test_images)):
image_path = os.path.join(test_images_dir, test_images[i])
output_path = os.path.join(output_dir, test_images[i])
prediction = predictions[i] * 255.0
prediction = prediction.astype(np.uint8)
imageio.imwrite(output_path, prediction)
# 训练并测试UNET模型
if __name__ == '__main__':
train()
test()
```
注意:以上代码中的模型结构和超参数可能需要根据具体数据集进行调整。并且,这段代码只适用于二分类问题,如果需要处理多分类问题,则需要对模型结构和损失函数等进行相应的修改。
阅读全文