对定义好的UNET模型model进行训练,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-06-29 17:17:53 浏览: 79
好的,您可以使用以下代码对定义好的UNET模型进行训练:
```
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from unet_model import unet # 导入UNet模型
# 设置训练和验证集路径
train_vol_path = "data/train/trainvol"
train_seg_path = "data/train/trainseg"
val_vol_path = "data/val/valvol"
val_seg_path = "data/val/valseg"
# 定义数据生成器
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
# 加载训练和验证数据
train_vol = train_datagen.flow_from_directory(train_vol_path, target_size=(256, 256), batch_size=32, class_mode=None)
train_seg = train_datagen.flow_from_directory(train_seg_path, target_size=(256, 256), batch_size=32, class_mode=None)
val_vol = val_datagen.flow_from_directory(val_vol_path, target_size=(256, 256), batch_size=32, class_mode=None)
val_seg = val_datagen.flow_from_directory(val_seg_path, target_size=(256, 256), batch_size=32, class_mode=None)
# 合并训练和验证数据
train_generator = zip(train_vol, train_seg)
val_generator = zip(val_vol, val_seg)
# 定义UNet模型
model = unet()
# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit(train_generator, epochs=10, steps_per_epoch=len(train_vol), validation_data=val_generator, validation_steps=len(val_vol))
# 保存模型权重
model.save_weights("unet_weights.h5")
```
在上述代码中,我们首先定义了训练集和验证集的路径,然后使用ImageDataGenerator来生成数据。接着,我们将训练和验证数据分别加载到train_vol、train_seg、val_vol和val_seg中,并使用zip函数将它们合并到train_generator和val_generator中。然后我们定义UNet模型,并使用compile函数进行编译。最后使用fit函数来训练模型,并将模型权重保存到文件中。
阅读全文