给出对定义好的UNET网络model的训练代码,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-06-30 13:14:36 浏览: 73
好的,以下是一个简单的UNET模型的训练代码,其中训练集原始图像为"data\train\trainvol",标签为"data\train\trainseg",验证集原始图像为"data\val\valvol",标签为"data\val\valseg"。
```
import os
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping
from model import unet
# define paths
train_data_path = "data/train/"
val_data_path = "data/val/"
train_images_path = os.path.join(train_data_path, "trainvol")
train_masks_path = os.path.join(train_data_path, "trainseg")
val_images_path = os.path.join(val_data_path, "valvol")
val_masks_path = os.path.join(val_data_path, "valseg")
# define hyperparameters
input_shape = (256, 256, 1)
batch_size = 4
epochs = 20
learning_rate = 1e-4
# define data generators
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest')
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_path,
target_size=(256, 256),
color_mode='grayscale',
batch_size=batch_size,
class_mode='input',
classes=['trainvol', 'trainseg'])
val_generator = val_datagen.flow_from_directory(
val_data_path,
target_size=(256, 256),
color_mode='grayscale',
batch_size=batch_size,
class_mode='input',
classes=['valvol', 'valseg'])
# define model
model = unet(input_shape)
# compile model
model.compile(optimizer=Adam(lr=learning_rate), loss='binary_crossentropy', metrics=['accuracy'])
# define callbacks
checkpoint = ModelCheckpoint("model.h5", monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True, mode='min')
early_stopping = EarlyStopping(monitor='val_loss', patience=5, mode='min', verbose=1)
# train model
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.n // batch_size,
epochs=epochs,
validation_data=val_generator,
validation_steps=val_generator.n // batch_size,
callbacks=[checkpoint, early_stopping])
# save history
with open('history.txt', 'w') as file:
file.write(str(history.history))
```
这里使用了ImageDataGenerator生成数据增强器,使用Adam优化器,二元交叉熵损失函数来训练UNET模型。同时使用ModelCheckpoint和EarlyStopping回调函数,保存最佳模型和在验证集上的数据停滞时停止训练。
阅读全文