给出IDLE训练已有模型model的代码,其中训练集原始图像"data\train\trainvol"",标签"data\train\trainseg",验证集原始图像"data\val\valvol",标签"data\val\valseg"
时间: 2023-06-29 17:17:10 浏览: 139
好的,以下是一份可能适用的IDLE训练已有模型model的代码,供参考:
```python
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from model import IDLE # 假设您的模型代码在model.py文件中
# 数据集路径
train_vol_dir = 'data/train/trainvol'
train_seg_dir = 'data/train/trainseg'
val_vol_dir = 'data/val/valvol'
val_seg_dir = 'data/val/valseg'
# 模型及训练参数
model = IDLE() # 假设您的模型名称为IDLE
epochs = 50
batch_size = 8
learning_rate = 0.001
# 数据增强
train_datagen = ImageDataGenerator(
rescale=1./255,
horizontal_flip=True,
vertical_flip=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2
)
val_datagen = ImageDataGenerator(rescale=1./255)
train_vol_generator = train_datagen.flow_from_directory(
train_vol_dir,
target_size=(256, 256),
batch_size=batch_size,
class_mode=None,
seed=42
)
train_seg_generator = train_datagen.flow_from_directory(
train_seg_dir,
target_size=(256, 256),
batch_size=batch_size,
class_mode=None,
seed=42
)
val_vol_generator = val_datagen.flow_from_directory(
val_vol_dir,
target_size=(256, 256),
batch_size=batch_size,
class_mode=None,
seed=42
)
val_seg_generator = val_datagen.flow_from_directory(
val_seg_dir,
target_size=(256, 256),
batch_size=batch_size,
class_mode=None,
seed=42
)
train_generator = zip(train_vol_generator, train_seg_generator)
val_generator = zip(val_vol_generator, val_seg_generator)
# 模型编译
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.BinaryAccuracy()])
# 回调函数
checkpoint = ModelCheckpoint(filepath='model.h5', monitor='val_loss', save_best_only=True)
earlystop = EarlyStopping(monitor='val_loss', patience=10)
# 训练模型
history = model.fit(train_generator,
epochs=epochs,
validation_data=val_generator,
callbacks=[checkpoint, earlystop])
# 保存模型
model.save('model.h5')
```
请注意,以上代码仅为示例,具体实现可能需要根据您的数据集和模型进行适当的修改。同时,如果您的数据集较大,建议使用tf.data.Dataset API来读取和处理数据。
阅读全文