import requests from bs4 import BeautifulSoup import matplotlib.pyplot as plt import pandas as pd PLAYERS_LIMIT = 25 TABLE_CLASS_NAME = "players_table" plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def get_top_players_scores(limit=PLAYERS_LIMIT, table_class_name=TABLE_CLASS_NAME): url = "https://nba.hupu.com/stats/players" response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") players = [] scores = [] table = soup.find("table", class_=table_class_name) rows = table.find_all("tr") for row in rows[1:limit+1]: cols = row.find_all("td") player = cols[1].text.strip() score_range = cols[4].text.strip() score_parts = score_range.split("-") min_score = float(score_parts[0]) max_score = float(score_parts[1]) score = int((min_score + max_score) / 2) players.append(player) scores.append(score) return players, scores def plot_top_players_scores(players, scores): data = {"Player": players, "Score": scores} df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(12, 6)) ax.bar(players, scores, color='green', alpha=0.6) ax.set_xlabel('球员', fontsize=12) ax.set_ylabel('得分', fontsize=12) ax.set_title('NBA球员得分', fontsize=14) plt.xticks(rotation=45, ha='right', fontsize=8) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) for i, score in enumerate(scores): ax.text(i, score+0.5, str(score), ha='center', va='bottom') fig.tight_layout() plt.show() if __name__ == "__main__": players, scores = get_top_players_scores() plot_top_players_scores(players, scores)为这段代码添加一个将数据写入excel的功能

时间: 2024-03-18 11:43:23 浏览: 103
PY

import reimport requestsfrom bs4 import BeautifulSoupimport t

好的,可以使用pandas将数据写入Excel文件。可以在`plot_top_players_scores`函数中添加以下代码实现: ```python def plot_top_players_scores(players, scores): data = {"Player": players, "Score": scores} df = pd.DataFrame(data) # 将数据写入Excel文件 writer = pd.ExcelWriter('top_players_scores.xlsx') df.to_excel(writer, index=False) writer.save() fig, ax = plt.subplots(figsize=(12, 6)) ax.bar(players, scores, color='green', alpha=0.6) ax.set_xlabel('球员', fontsize=12) ax.set_ylabel('得分', fontsize=12) ax.set_title('NBA球员得分', fontsize=14) plt.xticks(rotation=45, ha='right', fontsize=8) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) for i, score in enumerate(scores): ax.text(i, score+0.5, str(score), ha='center', va='bottom') fig.tight_layout() plt.show() ``` 这样就会在运行代码的同时生成一个名为`top_players_scores.xlsx`的Excel文件,并将获取到的球员得分数据写入该文件中。
阅读全文

相关推荐

import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt from PIL import Image import os # 定义请求头 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} # 爬取页面的 URL url = 'https://movie.douban.com/top250' # 发送 GET 请求并获取响应 response = requests.get(url, headers=headers) html = response.text # 解析 HTML soup = BeautifulSoup(html, 'html.parser') # 获取电影列表 movies = [] for item in soup.find_all('div', class_='item'): movie = {} movie['rank'] = item.find('em').text movie['title'] = item.find('span', class_='title').text movie['director'] = item.find('div', class_='bd').p.text.split('\n')[1].strip().split(':')[1] movie['actors'] = item.find('div', class_='bd').p.text.split('\n')[2].strip()[3:] movie['score'] = item.find('span', class_='rating_num').text movie['votes'] = item.find('span', class_='rating_num').next_sibling.next_sibling.text[:-3] movie['cover_url'] = item.find('img')['src'] movies.append(movie) # 存储数据到 CSV 文件 df = pd.DataFrame(movies) df.to_csv('films.csv', index=False) # 下载封面图片并保存 if not os.path.exists('films_pic'): os.mkdir('films_pic') for movie in movies: img_url = movie['cover_url'] img_title = movie['title'] img_path = os.path.join('films_pic', f"{img_title}.jpg") response = requests.get(img_url, headers=headers) with open(img_path, 'wb') as f: f.write(response.content) # 可视化评分和人数 plt.plot(df['rank'], df['score'], label='Score') plt.plot(df['rank'], df['votes'], label='Votes') plt.xlabel('Rank') plt.legend() plt.savefig('score_votes.png') plt.show()

import requests # 导入网页请求库 from bs4 import BeautifulSoup # 导入网页解析库 import pandas as pd import numpy as np import re import matplotlib.pyplot as plt from pylab import mpl danurl=[]; def get_danurl(surl): r=requests.get(surl) r.encoding='utf-8' demo=r.text soup=BeautifulSoup(demo,"html.parser") wangzhi=soup.find_all('a',string=re.compile('杭州市小客车增量指标竞价情况')) list3=' '.join('%s' %id for id in wangzhi) res_url=r'href="(.*?)"' alink = re.findall(res_url, list3, re.I | re.S | re.M) return alink def get_page(url): mydict={} r=requests.get(url) r.encoding='utf-8' demo=r.text #print(demo) soup=BeautifulSoup(demo,"html.parser") try: duan2=soup.find_all('p',class_="p")[0].text duan3=soup.find_all('p',class_="p")[2].text pattern3 = re.compile(r'(?<=个人)\d+.?\d*') gerenbj=pattern3.findall(duan2)[0] jingjiariqi=soup.find_all('p',class_="p")[0].text.split('。')[0] except IndexError: duan2=soup.find_all('p',class_="p")[2].text duan3=soup.find_all('p',class_="p")[4].text pattern3 = re.compile(r'(?<=个人)\d+.?\d*') gerenbj=pattern3.findall(duan2)[0] jingjiariqi=soup.find_all('p',class_="p")[2].text.split('。')[0] duan1=soup.find_all('p')[1].text pattern1 = re.compile(r'(?<=个人增量指标)\d+.?\d*') gerenzb=pattern1.findall(duan1)[0] pattern2 = re.compile(r'(?<=单位增量指标)\d+.?\d*') danweizb=pattern2.findall(duan1)[0] pattern4 = re.compile(r'(?<=单位)\d+.?\d*') danweibj=pattern4.findall(duan2)[0] pattern5 = re.compile(r'(?<=个人)\d+.?\d*') mingerencjj=pattern5.findall(duan3)[0] avegerencjj=pattern5.findall(duan3)[1] pattern6 = re.compile(r'(?<=单位)\d+.?\d*') mindanweicjj=pattern6.findall(duan3)[0] avedanweicjj=pattern6.findall(duan3)[1] pattern7 = re.compile(r'(?<=成交)\d+.?\d*') mingerencjs=pattern7.findall(duan3)[0] mindanweicjs=pattern7.findall(duan3)[1] 解释代码

import requests import re # from bs4 import BeautifulSoup import matplotlib.pyplot as plt import numpy as np # import pandas as pd i = 1 lists = [0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250] title = [] year = [] country = [] score = [] number = [] for page in range(0, 226, 25): url = 'https://movie.douban.com/top250?start=' + str(page) + '&filter=' headers = { 'User-Agent': "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36"} resp = requests.get(url=url, headers=headers) resp.encoding = "utf-8" pattern = re.compile( r'.*? < img width="100" alt="(?P<title>.*?)".*?class="">.*?.*?导演: (?P<director>.*?) .*?
.*?(?P<year>.*?) / (?P<country>.*?) .*?"v:average">(?P<score>.*?).*?(?P<number>.*?)人评价', re.S) pic_url = re.compile(r'< img width="100".*?src="(.*?)" class="">', re.S) pic_URl = pic_url.findall(resp.text) data2 = pattern.finditer(str(resp.text)) for url1 in pic_URl: file1 = open('films.pic\\' + str(i) + '.jpg', 'ab') Pic = requests.get(url1) file1.write(Pic.content) i = i + 1 file1.close() file2 = open('movie.text', 'a+', encoding='utf-8') for m in data2: if int(m['number']) / 100000 > 13: number.append(int(m['number']) / 100000) country.append(m['country']) year.append(m['year']) title.append(m['title']) score.append(m['score']) file2.write( '电影名:' + m['title'] + ', 导演:' + m['director'] + ', 年份:' + m['year'] + ', 国家:' + m['country'] + ', 评分:' + m[ 'score'] + ',评价人数:' + str(int(m['number']) / 100000) + ' 100k') file2.write('\n') print( '电影名:' + m['title'] + ', 导演:' + m['director'] + ', 年份:' + m['year'] + ', 国家:' + m['country'] + ', 评分:' + m[ 'score'] + ',评价人数:' + str(int(m['number']) / 100000) + ' 100k')

最新推荐

recommend-type

(二)爬取新房销售信息——数据分析+可视化篇

首先,我们已经通过requests和BeautifulSoup4获取了包含楼盘名、地址和价格的CSV文件。这些数据是进行后续分析的基础。 pandas是一个强大的数据处理库,它的核心数据结构是DataFrame,它类似于电子表格或SQL数据库...
recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

com.harmonyos.exception.DiskReadWriteException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

网络分析-Wireshark数据包筛选技巧详解及应用实例

内容概要:本文档详细介绍了Wireshark软件中各种数据包筛选规则,主要包括协议、IP地址、端口号、包长以及MAC地址等多个维度的具体筛选方法。同时提供了大量实用案例供读者学习,涵盖HTTP协议相关命令和逻辑条件的综合使用方式。 适合人群:对网络安全或数据分析有一定兴趣的研究者,熟悉基本网络概念和技术的专业人士。 使用场景及目标:适用于需要快速准确捕获特定类型网络流量的情况;如网络安全检测、性能优化分析、教学演示等多种实际应用场景。 阅读建议:本资料侧重于实操技能提升,在学习时最好配合实际操作练习效果更佳。注意掌握不同类型条件组合的高级用法,增强问题解决能力。
recommend-type

com.harmonyos.exception.BatteryOverheatException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。