写一个c++版本的BP神经网络案例
时间: 2023-09-19 07:05:47 浏览: 109
### 回答1:
我可以为你提供一个基于C语言的BP神经网络案例,它将模拟一个双层神经网络,它由输入层、隐藏层和输出层构成。输入层有3个神经元,隐藏层有4个神经元,输出层有3个神经元。它将采用随机梯度下降法来优化参数,以最小化损失函数。
### 回答2:
下面是一个使用C语言实现的BP神经网络案例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define INPUT_SIZE 2 // 输入层神经元个数
#define HIDDEN_SIZE 4 // 隐含层神经元个数
#define OUTPUT_SIZE 1 // 输出层神经元个数
#define LEARNING_RATE 0.1 // 学习率
#define MAX_ITERATION 1000 // 最大迭代次数
// Sigmoid激活函数
double sigmoid(double x) {
return 1 / (1 + exp(-x));
}
// 计算神经网络的输出
void feedForward(double *input, double *weights_ih, double *weights_ho, double *hidden_activation, double *output_activation) {
// 计算隐含层神经元的输出
for (int i = 0; i < HIDDEN_SIZE; i++) {
hidden_activation[i] = 0;
for (int j = 0; j < INPUT_SIZE; j++) {
hidden_activation[i] += input[j] * weights_ih[j * HIDDEN_SIZE + i];
}
hidden_activation[i] = sigmoid(hidden_activation[i]);
}
// 计算输出层神经元的输出
for (int i = 0; i < OUTPUT_SIZE; i++) {
output_activation[i] = 0;
for (int j = 0; j < HIDDEN_SIZE; j++) {
output_activation[i] += hidden_activation[j] * weights_ho[j * OUTPUT_SIZE + i];
}
output_activation[i] = sigmoid(output_activation[i]);
}
}
// 更新权值
void updateWeights(double *input, double *hidden_activation, double *output_activation, double *weights_ih, double *weights_ho, double *target) {
double output_delta = (target[0] - output_activation[0]) * output_activation[0] * (1 - output_activation[0]);
double hidden_delta[HIDDEN_SIZE];
// 更新隐含层到输出层的权值
for (int i = 0; i < HIDDEN_SIZE; i++) {
double delta = LEARNING_RATE * output_delta * hidden_activation[i];
weights_ho[i] += delta;
}
// 计算隐含层神经元的误差
for (int i = 0; i < HIDDEN_SIZE; i++) {
hidden_delta[i] = 0;
for (int j = 0; j < OUTPUT_SIZE; j++) {
hidden_delta[i] += output_delta * weights_ho[i * OUTPUT_SIZE + j];
}
hidden_delta[i] *= hidden_activation[i] * (1 - hidden_activation[i]);
}
// 更新输入层到隐含层的权值
for (int i = 0; i < INPUT_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
double delta = LEARNING_RATE * hidden_delta[j] * input[i];
weights_ih[i * HIDDEN_SIZE + j] += delta;
}
}
}
int main() {
// 初始化随机种子
srand((unsigned) time(NULL));
// 初始化输入数据和目标输出
double input_data[][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
double target_data[][1] = {{0}, {1}, {1}, {0}};
// 初始化权值矩阵
double *weights_ih = (double *) malloc(INPUT_SIZE * HIDDEN_SIZE * sizeof(double));
double *weights_ho = (double *) malloc(HIDDEN_SIZE * OUTPUT_SIZE * sizeof(double));
for (int i = 0; i < INPUT_SIZE * HIDDEN_SIZE; i++) {
weights_ih[i] = ((double) rand() / RAND_MAX - 0.5) * 2;
}
for (int i = 0; i < HIDDEN_SIZE * OUTPUT_SIZE; i++) {
weights_ho[i] = ((double) rand() / RAND_MAX - 0.5) * 2;
}
// 训练神经网络
int iteration = 0;
while (iteration < MAX_ITERATION) {
for (int i = 0; i < 4; i++) {
double *input = input_data[i];
double *target = target_data[i];
double hidden_activation[HIDDEN_SIZE];
double output_activation[OUTPUT_SIZE];
feedForward(input, weights_ih, weights_ho, hidden_activation, output_activation);
updateWeights(input, hidden_activation, output_activation, weights_ih, weights_ho, target);
}
iteration++;
}
// 预测结果
for (int i = 0; i < 4; i++) {
double *input = input_data[i];
double hidden_activation[HIDDEN_SIZE];
double output_activation[OUTPUT_SIZE];
feedForward(input, weights_ih, weights_ho, hidden_activation, output_activation);
printf("Input: %.1lf %.1lf, Output: %.3lf\n", input[0], input[1], output_activation[0]);
}
free(weights_ih);
free(weights_ho);
return 0;
}
```
以上是一个简单的C语言版本的BP神经网络案例。该案例使用随机数初始化权值矩阵,并根据训练数据进行迭代训练,直到达到最大迭代次数。每次迭代中,会通过前向传播计算神经网络的输出,并根据误差来更新权值。最后,使用训练好的神经网络进行预测,并输出结果。
### 回答3:
下面是一个简单的C语言版本的BP神经网络案例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
// 定义BP神经网络结构体
typedef struct {
int input_num; // 输入层神经元数量
int hidden_num; // 隐含层神经元数量
int output_num; // 输出层神经元数量
double *input_layer; // 输入层神经元数据
double *hidden_layer; // 隐含层神经元数据
double *output_layer; // 输出层神经元数据
double **w1; // 输入层到隐含层之间的权重
double **w2; // 隐含层到输出层之间的权重
double *hidden_errors; // 隐含层误差
double *output_errors; // 输出层误差
} BP_Network;
// 初始化BP神经网络结构体
void init_BPN(BP_Network *network) {
int i, j;
network->input_num = 2;
network->hidden_num = 3;
network->output_num = 1;
network->input_layer = (double *)malloc(network->input_num * sizeof(double));
network->hidden_layer = (double *)malloc(network->hidden_num * sizeof(double));
network->output_layer = (double *)malloc(network->output_num * sizeof(double));
network->hidden_errors = (double *)malloc(network->hidden_num * sizeof(double));
network->output_errors = (double *)malloc(network->output_num * sizeof(double));
// 分配和初始化权重矩阵
network->w1 = (double **)malloc(network->input_num * sizeof(double *));
for (i = 0; i < network->input_num; i++) {
network->w1[i] = (double *)malloc(network->hidden_num * sizeof(double));
for (j = 0; j < network->hidden_num; j++) {
network->w1[i][j] = (double)rand() / RAND_MAX;
}
}
network->w2 = (double **)malloc(network->hidden_num * sizeof(double *));
for (i = 0; i < network->hidden_num; i++) {
network->w2[i] = (double *)malloc(network->output_num * sizeof(double));
for (j = 0; j < network->output_num; j++) {
network->w2[i][j] = (double)rand() / RAND_MAX;
}
}
}
// BP神经网络的前向传播
void forward(BP_Network *network) {
int i, j;
double sum;
// 更新隐含层的输出
for (i = 0; i < network->hidden_num; i++) {
sum = 0.0;
for (j = 0; j < network->input_num; j++) {
sum += network->input_layer[j] * network->w1[j][i];
}
network->hidden_layer[i] = 1.0 / (1.0 + exp(-sum));
}
// 更新输出层的输出
for (i = 0; i < network->output_num; i++) {
sum = 0.0;
for (j = 0; j < network->hidden_num; j++) {
sum += network->hidden_layer[j] * network->w2[j][i];
}
network->output_layer[i] = 1.0 / (1.0 + exp(-sum));
}
}
// BP神经网络的反向传播
void backward(BP_Network *network, double *target) {
int i, j;
double sum;
// 计算输出层误差
for (i = 0; i < network->output_num; i++) {
network->output_errors[i] = network->output_layer[i] * (1 - network->output_layer[i]) * (target[i] - network->output_layer[i]);
}
// 计算隐含层误差
for (i = 0; i < network->hidden_num; i++) {
sum = 0.0;
for (j = 0; j < network->output_num; j++) {
sum += network->output_errors[j] * network->w2[i][j];
}
network->hidden_errors[i] = network->hidden_layer[i] * (1 - network->hidden_layer[i]) * sum;
}
// 更新权重矩阵w2
for (i = 0; i < network->hidden_num; i++) {
for (j = 0; j < network->output_num; j++) {
network->w2[i][j] += network->hidden_layer[i] * network->output_errors[j];
}
}
// 更新权重矩阵w1
for (i = 0; i < network->input_num; i++) {
for (j = 0; j < network->hidden_num; j++) {
network->w1[i][j] += network->input_layer[i] * network->hidden_errors[j];
}
}
}
// 主函数
int main() {
int i;
double input[2];
double target[1];
BP_Network network;
init_BPN(&network);
// 训练BP神经网络
for (i = 0; i < 1000; i++) {
input[0] = 0.0;
input[1] = 0.0;
target[0] = 0.0;
network.input_layer = input;
forward(&network);
backward(&network, target);
input[0] = 1.0;
input[1] = 0.0;
target[0] = 1.0;
network.input_layer = input;
forward(&network);
backward(&network, target);
input[0] = 0.0;
input[1] = 1.0;
target[0] = 1.0;
network.input_layer = input;
forward(&network);
backward(&network, target);
input[0] = 1.0;
input[1] = 1.0;
target[0] = 0.0;
network.input_layer = input;
forward(&network);
backward(&network, target);
}
// 测试BP神经网络
input[0] = 1.0;
input[1] = 0.0;
network.input_layer = input;
forward(&network);
printf("输出结果: %lf\n", network.output_layer[0]);
return 0;
}
```
这个案例实现了一个简单的使用BP神经网络解决异或问题的示例。训练数据集包括四个输入输出对,可以根据需要修改输入和输出数据。运行程序后,它将打印出测试输入 `[1.0, 0.0]` 对应的输出结果。
阅读全文