self = <json.encoder.JSONEncoder object at 0x0000014E7C1624A0> o = <Personal_data.URL_个人资料: 'https://maitenghuicai.com'> def default(self, o): """Implement this method in a subclass such that it returns a serializable object for ``o``, or calls the base implementation (to raise a ``TypeError``). For example, to support arbitrary iterators, you could implement default like this:: def default(self, o): try: iterable = iter(o) except TypeError: pass else: return list(iterable) # Let the base class default method raise the TypeError return JSONEncoder.default(self, o) """ > raise TypeError(f'Object of type {o.__class__.__name__} ' f'is not JSON serializable') E TypeError: Object of type Personal_data is not JSON serializable

时间: 2023-07-16 09:13:03 浏览: 443
这个错误是因为默认的 JSONEncoder 不知道如何将 `Personal_data` 类型的对象转换为 JSON 格式的字符串。 你可以通过自定义编码器来解决这个问题。你需要创建一个类,继承自 `json.JSONEncoder`,并实现 `default()` 方法,将 `Personal_data` 类型的对象转换为可序列化的 Python 对象或字符串。 以下是一个示例: ```python import json from Personal_data import Personal_data class PersonalDataEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Personal_data): return str(obj) return super().default(obj) data = {'url': Personal_data('https://maitenghuicai.com')} json_data = json.dumps(data, cls=PersonalDataEncoder) print(json_data) ``` 在这里,我们创建了 `PersonalDataEncoder` 类,并重载了 `default()` 方法。如果 `obj` 是一个 `Personal_data` 实例,我们将其转换为一个字符串。否则,我们调用父类的 `default()` 方法来处理其他类型的对象。最后,我们使用 `PersonalDataEncoder` 类作为 `json.dumps()` 的 `cls` 参数,将 Python 对象转换为 JSON 字符串。 这将输出一个 JSON 格式的字符串,其中包含一个 `url` 键和 `Personal_data` 对象的字符串表示。
阅读全文

相关推荐

解释这段代码:import os.path as osp import pandas as pd import torch from sentence_transformers import SentenceTransformer from torch_geometric.data import HeteroData, download_url, extract_zip from torch_geometric.transforms import RandomLinkSplit, ToUndirected url = 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip' root = osp.join(osp.dirname(osp.realpath(__file__)), '../../data/MovieLens') extract_zip(download_url(url, root), root) movie_path = osp.join(root, 'ml-latest-small', 'movies.csv') rating_path = osp.join(root, 'ml-latest-small', 'ratings.csv') def load_node_csv(path, index_col, encoders=None, **kwargs): df = pd.read_csv(path, index_col=index_col, **kwargs) mapping = {index: i for i, index in enumerate(df.index.unique())} x = None if encoders is not None: xs = [encoder(df[col]) for col, encoder in encoders.items()] x = torch.cat(xs, dim=-1) return x, mapping def load_edge_csv(path, src_index_col, src_mapping, dst_index_col, dst_mapping, encoders=None, **kwargs): df = pd.read_csv(path, **kwargs) src = [src_mapping[index] for index in df[src_index_col]] dst = [dst_mapping[index] for index in df[dst_index_col]] edge_index = torch.tensor([src, dst]) edge_attr = None if encoders is not None: edge_attrs = [encoder(df[col]) for col, encoder in encoders.items()] edge_attr = torch.cat(edge_attrs, dim=-1) return edge_index, edge_attr class SequenceEncoder(object): # The 'SequenceEncoder' encodes raw column strings into embeddings. def __init__(self, model_name='all-MiniLM-L6-v2', device=None): self.device = device self.model = SentenceTransformer(model_name, device=device) @torch.no_grad() def __call__(self, df): x = self.model.encode(df.values, show_progress_bar=True, convert_to_tensor=True, device=self.device) return x.cpu() class GenresEncoder(object)

报错如下: Traceback (most recent call last): File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 2091, in __call__ return self.wsgi_app(environ, start_response) File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 2076, in wsgi_app response = self.handle_exception(e) File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 2073, in wsgi_app response = self.full_dispatch_request() File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 1518, in full_dispatch_request rv = self.handle_user_exception(e) File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 1516, in full_dispatch_request rv = self.dispatch_request() File "/usr/local/lib64/python3.6/site-packages/flask/app.py", line 1502, in dispatch_request return self.ensure_sync(self.view_functions[rule.endpoint])(**req.view_args) File "/temp/py/app-07240001.py", line 16, in display_yaml return render_template('index.html', highlighted_data=highlighted_data, css=css) File "/usr/local/lib64/python3.6/site-packages/flask/templating.py", line 150, in render_template ctx.app, File "/usr/local/lib64/python3.6/site-packages/flask/templating.py", line 128, in _render rv = template.render(context) File "/usr/local/lib/python3.6/site-packages/jinja2/environment.py", line 1291, in render self.environment.handle_exception() File "/usr/local/lib/python3.6/site-packages/jinja2/environment.py", line 925, in handle_exception raise rewrite_traceback_stack(source=source) File "/temp/py/templates/index.html", line 16, in top-level template code var originalData = {{ data|tojson|safe }}; File "/usr/local/lib/python3.6/site-packages/jinja2/filters.py", line 1673, in do_tojson return htmlsafe_json_dumps(value, dumps=dumps, **kwargs) File "/usr/local/lib/python3.6/site-packages/jinja2/utils.py", line 736, in htmlsafe_json_dumps dumps(obj, **kwargs) File "/usr/local/lib64/python3.6/site-packages/flask/json/__init__.py", line 139, in dumps rv = _json.dumps(obj, **kwargs) File "/usr/lib64/python3.6/json/__init__.py", line 238, in dumps **kw).encode(obj) File "/usr/lib64/python3.6/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/usr/lib64/python3.6/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) File "/usr/local/lib64/python3.6/site-packages/flask/json/__init__.py", line 57, in default return super().default(o) File "/usr/lib64/python3.6/json/encoder.py", line 180, in default o.__class__.__name__) TypeError: Object of type 'Undefined' is not JSON serializable

C:\Users\Surperman\anaconda3\envs\pytorch\python.exe C:\Users\Surperman\PycharmProjects\pythonProject\糖尿病遗传风险监测\DNN\train.py Setting up a new session... Traceback (most recent call last): File "C:\Users\Surperman\PycharmProjects\pythonProject\糖尿病遗传风险监测\DNN\train.py", line 123, in <module> train() File "C:\Users\Surperman\PycharmProjects\pythonProject\糖尿病遗传风险监测\DNN\train.py", line 30, in train wind.line([{0., 0.}], [0.], win='train', opts=dict(title='loss&mae', legend=['loss', 'mae'])) File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\site-packages\visdom\__init__.py", line 414, in wrapped_f return f(*args, **kwargs) File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\site-packages\visdom\__init__.py", line 1842, in line return self.scatter( File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\site-packages\visdom\__init__.py", line 414, in wrapped_f return f(*args, **kwargs) File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\site-packages\visdom\__init__.py", line 1766, in scatter return self._send(data_to_send, endpoint=endpoint) File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\site-packages\visdom\__init__.py", line 760, in _send data=json.dumps(msg), File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\json\__init__.py", line 231, in dumps return _default_encoder.encode(obj) File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\json\encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\json\encoder.py", line 257, in iterencode return _iterencode(o, 0) File "C:\Users\Surperman\anaconda3\envs\pytorch\lib\json\encoder.py", line 179, in default raise TypeError(f'Object of type {o.__class__.__name__} ' TypeError: Object of type set is not JSON serializable Process finished with exit code 1

Traceback (most recent call last): File "D:/PyCharm 2021/新建文件夹/数据转成可视化.py", line 105, in <module> map_1.render("全国疫情分布图.html") File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\pyecharts\charts\base.py", line 92, in render self._prepare_render() File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\pyecharts\charts\base.py", line 116, in _prepare_render self.json_contents = self.dump_options() File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\pyecharts\charts\base.py", line 77, in dump_options json.dumps(self.get_options(), indent=4, default=default, ignore_nan=True) File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\__init__.py", line 381, in dumps return cls( File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 300, in encode chunks = list(chunks) File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 714, in _iterencode for chunk in _iterencode_dict(o, _current_indent_level): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 668, in _iterencode_dict for chunk in chunks: File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 735, in _iterencode for chunk in _iterencode(o, _current_indent_level): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 714, in _iterencode for chunk in _iterencode_dict(o, _current_indent_level): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 668, in _iterencode_dict for chunk in chunks: File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 544, in _iterencode_list for chunk in chunks: File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 620, in _iterencode_dict key = _stringify_key(key) File "C:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\simplejson\encoder.py", line 580, in _stringify_key raise TypeError('keys must be str, int, float, bool or None, ' TypeError: keys must be str, int, float, bool or None, not builtin_function_or_method

最新推荐

recommend-type

轻松OBS录屏黑屏解决办法(原创文章请勿转载)NVENC Error:init_encoder:报错信息

描述中的“NVENC Error:init_encoder:报错信息”是OBS在使用NVIDIA显卡硬件编码功能时遇到的问题。NVENC是NVIDIA显卡提供的硬件编码器,它能加速视频编码过程,减少CPU的负担。错误提示“NV_ENC_ERR_INVALID_VERSION...
recommend-type

精选毕设项目-微笑话.zip

精选毕设项目-微笑话
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->