arma_mod20 = ARIMA(data, order=(2, 1,1)).fit()

时间: 2023-09-12 08:12:56 浏览: 40
这是一个使用ARIMA模型对时间序列数据进行建模的代码。ARIMA模型是一种广泛应用于时间序列分析的统计模型,可以用来预测未来的趋势和变化。在这个代码中,使用了ARIMA(2,1,1)的模型,其中2表示AR模型中使用的滞后项的数量,1表示差分的阶数,1表示MA模型中使用的滞后项的数量。fit()函数用于拟合模型。
相关问题

优化代码from statsmodels.tsa.arima_model import ARIMA arma_mod20 = sm.tsa.ARIMA(dta,(2,0)).fit() print(arma_mod20.aic,arma_mod20.bic,arma_mod20.hqic) arma_mod01 = sm.tsa.ARIMA(dta,(0,1)).fit() print(arma_mod01.aic,arma_mod01.bic,arma_mod01.hqic) arma_mod10 = sm.tsa.ARIMA(dta,(1,0)).fit() print(arma_mod10.aic,arma_mod10.bic,arma_mod10.hqic)

可以将代码优化为以下形式: ``` import statsmodels.api as sm # 设置 ARMA 模型的参数范围 p_range = range(3) q_range = range(3) best_aic = float("inf") best_order = None # 遍历所有参数组合,找到 AIC 最小的模型 for p in p_range: for q in q_range: try: arma_model = sm.tsa.ARIMA(dta, order=(p, 0, q)).fit() if arma_model.aic < best_aic: best_aic = arma_model.aic best_order = (p, 0, q) except: continue # 输出 AIC 最小的模型的参数和值 best_model = sm.tsa.ARIMA(dta, order=best_order).fit() print(f"AIC: {best_model.aic}, BIC: {best_model.bic}, HQIC: {best_model.hqic}") ``` 这样可以自动遍历所有的参数组合,找到 AIC 最小的模型,并输出其参数和值。同时,还加入了异常处理,以防止出现无法拟合的情况。

import datetime def Do_ARMA(TRADE_ADDRESS,TrainTime,PredictTime,p,q,Draw=False): Tag_Time_Series=GetTimeSeries(TRADE_ADDRESS) ARMA_Time=[PredictTime[0]-timedelta(32),PredictTime[0]-timedelta(1)] #ARMA_Time=[pd.datetime(2015,10,31),pd.datetime(2015,11,30)] Tag_Time_Series=Get_Part_of_TimeSeries(Tag_Time_Series,ARMA_Time) #ARMA model from statsmodels.tsa.arima_model import ARMA arma_mod=ARMA(Tag_Time_Series,(p,q)).fit() Predict=arma_mod.predict(start=str(PredictTime[0]),end=str(PredictTime[1])) if Draw==True: plt.rc('figure',figsize=(12,8)) plt.plot(arma_mod.fittedvalues,'r') plt.plot(Tag_Time_Series,'b') plt.plot(Predict,'g-') return Predict

这是一个 Python 函数,它接受一些参数,执行时间序列预测模型,并返回预测结果。这个函数使用了 statsmodels 库中的 ARMA 模型来进行预测。具体来说,它做了以下几件事情: 1. 获取指定地址的时间序列数据(`GetTimeSeries(TRADE_ADDRESS)`)。 2. 选择一个时间段(`ARMA_Time`)作为 ARMA 模型的训练数据,其中包括了一个预测开始时间和一个预测结束时间。 3. 从时间序列数据中截取出上述时间段的数据(`Get_Part_of_TimeSeries(Tag_Time_Series,ARMA_Time)`)。 4. 使用 ARMA 模型训练数据(`ARMA(Tag_Time_Series,(p,q)).fit()`),其中 p 和 q 是模型的超参数。 5. 对指定的预测时间段进行预测(`arma_mod.predict(start=str(PredictTime[0]),end=str(PredictTime[1]))`)。 6. 如果 `Draw` 参数为 True,则将训练数据、拟合数据和预测数据绘制成图表。 需要注意的是,这段代码只是一个函数的部分实现,它缺少一些重要的函数和库,例如 `GetTimeSeries()` 和 `matplotlib` 库。如果您想了解更多关于时间序列预测模型的内容,可以参考相关教材或者网上的教程。

相关推荐

sales = list(np.diff(data["#Passengers"])) data2 = { "Month":data1.index[1:], #1月1日是空值,从1月2号开始取 "#Passengers":sales } df = pd.DataFrame(data2) df['Month'] = pd.to_datetime(df['Month']) #df[''date]数据类型为“object”,通过pd.to_datetime将该列数据转换为时间类型,即datetime。 data_diff = df.set_index(['Month'], drop=True) #将日期设置为索引 data_diff.head() print(data_diff) fig = plt.figure(figsize=(12,8)) ax1=fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(data_diff,lags=20,ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(data_diff,lags=20,ax=ax2) plt.show() # 为了控制计算量,我们限制AR最大阶不超过6,MA最大阶不超过4。 sm.tsa.arma_order_select_ic(data_diff,max_ar=100,max_ma=4,ic='aic')['aic_min_order'] # AIC ''' #对模型进行定阶 pmax = int(len(df) / 10) #一般阶数不超过 length /10 qmax = int(len(df) / 10) bic_matrix = [] for p in range(pmax +1): temp= [] for q in range(qmax+1): try: temp.append(ARIMA(data, (p, 1, q)).fit().bic) except: temp.append(None) bic_matrix.append(temp) bic_matrix = pd.DataFrame(bic_matrix) #将其转换成Dataframe 数据结构 p,q = bic_matrix.stack().idxmin() #先使用stack 展平, 然后使用 idxmin 找出最小值的位置 print(u'BIC 最小的p值 和 q 值:%s,%s' %(p,q)) # BIC 最小的p值 和 q 值:0,1 #所以可以建立ARIMA 模型,ARIMA(0,1,1) ''' model = ARIMA(data, (0,1,1)).fit() #model.summary2() predictions_ARIMA_diff = pd.Series(model.fittedvalues, copy=True) print("========") print(predictions_ARIMA_diff.head()) exit() plt.figure(figsize=(10, 6)) plt.plot(predictions_ARIMA_diff,label="forecast_diff") plt.plot(data_diff,label="diff") plt.xlabel('日期',fontsize=12,verticalalignment='top') plt.ylabel('销量差分',fontsize=14,horizontalalignment='center') plt.legend() plt.show()

最新推荐

recommend-type

鸡国大冒险运行程序,点开即用

recommend-type

基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip基于Python+Flask的安全多方计算的隐私保护系统设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

聊天系统(java+applet).zip

聊天系统(java+applet)
recommend-type

setuptools-11.0-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。