opencv EpnP在输入4对完全对应的点对,计算出来的结果不稳定,分析原型,给出公式推导

时间: 2024-04-21 16:30:19 浏览: 89
PDF

使用opencv中匹配点对的坐标提取方式

EpnP(Efficient Perspective-n-Point)是一种相机姿态估计的算法,它可以通过已知的三维空间中的特征点和对应的图像中的二维特征点的对应关系,来计算相机的位姿(旋转矩阵和平移向量)。Opencv的 EpnP 算法基于Li的论文《A Two-Stage Algorithm for the Non-Coplanar Pose Estimation Problem》实现,它的稳定性相对较好,但也不是完全稳定的,可能会受到一些因素的影响,如噪声、点对的数量和质量等。 EpnP算法的公式推导比较复杂,这里简单介绍一下它的基本原理和一些关键的公式。假设我们已知三维空间中的 $n$ 个点 $P_i$ 和对应的图像中的 $n$ 个点 $p_i$,其中 $i=1,2,...,n$。我们假设相机的内参矩阵已知,为 $K$,相机的旋转矩阵为 $R$,平移向量为 $t$。我们的目标是求解 $R$ 和 $t$。 EpnP算法的核心思想是,将图像点的坐标系和相机坐标系都变换到三维空间中,然后通过最小化重投影误差来求解相机的位姿。具体来说,我们可以将图像点 $p_i$ 和相机坐标系的原点 $O_c$ 的连线,看作是一条与相机坐标系的 $Z$ 轴平行的射线,然后将这条射线与三维空间中对应的特征点 $P_i$ 相交,得到一个三维点 $X_i$。然后,我们可以将这个三维点 $X_i$ 投影到图像平面上,得到一个新的点 $p'_i$。这个点 $p'_i$ 应该与原始点 $p_i$ 非常接近,如果它们之间的距离很小,就说明我们的估计比较准确。 通过上述过程,我们可以得到 $n$ 个点对 $(P_i, p'_i)$,其中 $p'_i$ 是通过将 $P_i$ 投影到图像平面上得到的。我们可以将 $p'_i$ 和 $p_i$ 的坐标差看作是重投影误差,然后通过最小化所有点对的重投影误差来求解相机的位姿。具体来说,我们可以定义重投影误差为: $$ e_i = \frac{\|p_i - p'_i\|^2}{\sigma_i^2}, $$ 其中 $\sigma_i$ 是第 $i$ 个点的误差权重。通常情况下,我们可以将 $\sigma_i$ 设置为所有点对的重投影误差的平均值。然后,我们可以通过最小化所有点对的重投影误差的和来求解相机的位姿: $$ \min_{R,t} \sum_{i=1}^n e_i. $$ 这个问题可以通过线性代数的方法来求解。具体来说,我们可以将相机坐标系的原点 $O_c$ 和三维点 $P_i$ 都表示为相机坐标系下的坐标向量,然后将射线的方向向量表示为 $u_i$。这样,我们就可以得到一个线性方程组: $$ \begin{bmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_n^T \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} = \begin{bmatrix} X_1^T \\ X_2^T \\ \vdots \\ X_n^T \end{bmatrix} , $$ 其中 $r_{ij}$ 是旋转矩阵 $R$ 的元素,$t_i$ 是平移向量 $t$ 的第 $i$ 个分量,$u_i$ 是射线的方向向量,$X_i$ 是三维点 $P_i$ 在相机坐标系下的坐标向量。 我们可以将上述线性方程组中的旋转矩阵和平移向量组成一个 $3\times 4$ 的矩阵 $M$。然后,我们可以使用 SVD(奇异值分解)方法来求解这个线性方程组,具体来说,我们可以将 $M$ 分解为 $M=U\Sigma V^T$ 的形式,然后求解 $R$ 和 $t$: $$ R = UV^T, \quad t = \bar{t} - R\bar{P}, $$ 其中 $\bar{t}$ 和 $\bar{P}$ 分别是所有三维点的重心和所有图像点的重心。这个求解过程相对比较简单,而且可以通过 SVD 方法来求解,不需要进行迭代,因此比较高效。 总的来说,EpnP算法是一种比较高效且准确的相机位姿估计算法,它可以通过已知的三维空间中的特征点和对应的图像中的二维特征点的对应关系,来计算相机的位姿(旋转矩阵和平移向量)。
阅读全文

相关推荐

最新推荐

recommend-type

python opencv对图像进行旋转且不裁剪图片的实现方法

以上就是使用Python和OpenCV对图像进行旋转且不裁剪图片的实现方法。这个函数接收一个图像和一个旋转角度作为输入,返回一个旋转后的完整图像。通过这种方式,我们可以自由地旋转图像而不用担心失去任何像素信息。 ...
recommend-type

使用opencv中匹配点对的坐标提取方式

在OpenCV库中,特征检测、描述和匹配是计算机视觉任务中的关键步骤,特别是对于图像对之间的相似性分析。在给定的标题和描述中,我们聚焦于如何从匹配的特征点对中提取坐标。`vector<DMatch> bestMatches` 是OpenCV...
recommend-type

OpenCV实现图像角点检测

OpenCV是一款功能强大且广泛应用于图像处理领域的库,而图像角点检测是计算机视觉技术中一个非常重要的方面,本文将详细介绍OpenCV实现图像角点检测的方法,并对相关知识点进行讲解。 图像角点检测是指从图像中...
recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

在Python的计算机视觉领域,OpenCV库是一个非常重要的工具,它提供了丰富的图像处理功能。本文将详细介绍如何使用OpenCV获取二值图像的轮廓以及这些轮廓的中心点坐标。 首先,我们要加载二值图像。二值图像是一种...
recommend-type

python Opencv计算图像相似度过程解析

在Python中,OpenCV库广泛用于图像处理和计算机视觉任务,其中包括计算图像的相似度。本文将深入探讨如何使用OpenCV来分析图像的相似度,主要关注颜色特征,特别是直方图、灰度图像和图像指纹的概念。 首先,我们要...
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。