基于遗传算法路径规划的MATLAB代码
时间: 2023-06-12 13:07:12 浏览: 187
以下是一个基于遗传算法的路径规划的MATLAB代码示例:
```matlab
clc;
clear;
close all;
% 地图大小
map_size = [20, 20];
% 障碍物位置
obstacle = [3,3;4,3;5,3;6,3;7,3;7,4;7,5;7,6;7,7;6,7;5,7;4,7;3,7;3,6;3,5;3,4];
obstacle_num = size(obstacle, 1);
% 起点和终点
start_point = [1,1];
end_point = [20,20];
% 遗传算法参数
population_size = 100;
gene_length = 100;
generation = 100;
cross_rate = 0.8;
mutation_rate = 0.01;
% 初始化种群
population = randi([0, 1], population_size, gene_length);
% 开始遗传算法
for i = 1:generation
% 计算适应度
fitness = zeros(population_size, 1);
for j = 1:population_size
path = decode(population(j, :), map_size);
fitness(j) = evaluate(path, obstacle, start_point, end_point);
end
% 选择
selected_population = selection(population, fitness);
% 交叉
crossed_population = crossover(selected_population, cross_rate);
% 变异
mutated_population = mutation(crossed_population, mutation_rate);
% 合并新一代种群
population = [selected_population; crossed_population; mutated_population];
end
% 找到最优路径
best_fitness = 0;
best_path = [];
for i = 1:population_size
path = decode(population(i, :), map_size);
fitness = evaluate(path, obstacle, start_point, end_point);
if fitness > best_fitness
best_fitness = fitness;
best_path = path;
end
end
% 绘制地图
figure;
hold on;
axis([0, map_size(1), 0, map_size(2)]);
for i = 1:obstacle_num
rectangle('Position',[obstacle(i, 1)-0.5,obstacle(i, 2)-0.5,1,1],'FaceColor',[0.5 0.5 0.5],'EdgeColor','none');
end
plot(start_point(1), start_point(2), 'ro', 'MarkerSize', 10);
plot(end_point(1), end_point(2), 'r*', 'MarkerSize', 10);
% 绘制路径
for i = 1:length(best_path)-1
x = [best_path(i, 1), best_path(i+1, 1)];
y = [best_path(i, 2), best_path(i+1, 2)];
line(x, y, 'Color', 'r', 'LineWidth', 2);
end
```
其中,`decode` 函数将一个二进制编码的个体解码为一个路径,`evaluate` 函数计算该路径的适应度,`selection` 函数对种群进行选择,`crossover` 函数进行交叉,`mutation` 函数进行变异。在代码中,路径的表示方式采用了一个二维坐标数组,例如 `[1, 1; 1, 2; 2, 2; 3, 2; ...]` 表示从起点开始,依次经过了 $(1,1)$、$(1,2)$、$(2,2)$、$(3,2)$ 等点,并最终到达终点。
阅读全文