dt = 1.0 # 采样时间 A = np.array([[1, dt, 0.5*dt*dt], [0, 1, dt], [0, 0, 1]]) # 状态转移矩阵 H = np.array([1, 0, 0]).reshape(1, 3) # 观测矩阵 Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.1, 0.01], [0.0, 0.01, 0.01]]) # 过程噪声协方差矩阵 R = np.array([0.5]).reshape(1, 1) # 观测噪声协方差矩阵 P = np.eye(3) # 状态协方差矩阵 # 定义卡尔曼滤波函数 def kalman_filter(z): x_hat = np.zeros((3, 1)) # 初始状态向量 for i in range(len(z)): # 预测 x_hat_minus = np.dot(A, x_hat) P_minus = np.dot(np.dot(A, P), A.T) + Q # 更新 K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R)) x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus))) P = np.dot((np.eye(3) - np.dot(K, H)), P_minus) return x_hat # 对每个方向的时序信号进行卡尔曼滤波 x_filt = kalman_filter(x)报错File "G:\project2\KSVD.py", line 36, in <module> x_filt = kalman_filter(x) File "G:\project2\KSVD.py", line 26, in kalman_filter P_minus = np.dot(np.dot(A, P), A.T) + Q UnboundLocalError: local variable 'P' referenced before assignment
时间: 2023-06-15 07:07:01 浏览: 125
这个错误是因为在函数内部使用了变量P,但没有将其定义为全局变量或者传递给函数。解决方法是在函数内部将P定义为全局变量,或者将其作为函数的参数传递进来。例如:
```python
def kalman_filter(z, P):
x_hat = np.zeros((3, 1)) # 初始状态向量
for i in range(len(z)):
# 预测
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), A.T) + Q
# 更新
K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R))
x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus)))
P = np.dot((np.eye(3) - np.dot(K, H)), P_minus)
return x_hat, P
P = np.eye(3) # 初始状态协方差矩阵
x_filt, P = kalman_filter(x, P)
```
相关问题
解释一下这个代码 #%%In[1] import numpy as np import matplotlib.pyplot as plt #%%In[2] def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) #t = np.arange(0,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi**2)*(f**2)*(t**2)) * np.exp(-(np.pi**2)*(f**2)*(t**2)) return t,y i = 0 ; Frequency = 20;length = 0.128;dt = 0.001 t0, w0 = ricker(Frequency, length, dt) #%% rho = np.array([1.6, 2.2]) v = np.array([2000, 2500]) depth = 50 Z = rho*v L = (Z[1]-Z[0])/(Z[1]+Z[0]) t1 = np.arange(0, 0.2, dt) L1 = np.zeros(np.size(t1)) t = depth*2/v[0] L1[int(np.round(t/dt))] = L #%% syn = np.convolve(L1, w0, 'same') #%% fig = plt.figure(num=1, figsize=(20,15),dpi=300) ax1 = fig.add_subplot(1, 3 , 1) ax1.plot(w0, t0) ax1.xaxis.set_ticks_position('top') ax1.invert_yaxis() ax1.set_title("Amplitude", fontsize = 12) ax1.set_ylabel("Time(s)",fontsize = 12) ax2 = fig.add_subplot(1, 3, 2) ax2.plot(L1, t1) ax2.xaxis.set_ticks_position('top') ax2.invert_yaxis() ax2.set_title("Reflection coefficient", fontsize = 12) ax2.set_ylabel("Two-way travel time(s)",fontsize = 12) ax3 = fig.add_subplot(1, 3, 3) ax3.plot(syn, t1) ax3.xaxis.set_ticks_position('top') ax3.invert_yaxis() ax3.set_title("Amplitude", fontsize = 12) ax3.set_ylabel("Two-way travel time(s)",fontsize = 12) fig.suptitle('Two-layer synthetic seismogram', fontsize = 18) plt.tight_layout()
这段代码是一个简单的Python程序,用于生成一个两层地层的合成地震记录。下面是对每一行代码的解释:
1. `import numpy as np`和`import matplotlib.pyplot as plt`导入了NumPy和Matplotlib库,分别用于科学计算和数据可视化。
2. `ricker(f, length, dt)`是一个函数,用于生成一个Ricker子波。其中`f`是子波的主频,`length`是子波的长度,`dt`是采样间隔。函数返回子波的时间序列`t`和振幅序列`y`。
3. `i = 0 ; Frequency = 20;length = 0.128;dt = 0.001`定义了一些参数,包括采样间隔`dt`、子波长度`length`和主频`Frequency`。
4. `t0, w0 = ricker(Frequency, length, dt)`调用`ricker`函数生成Ricker子波。
5. `rho = np.array([1.6, 2.2])`和`v = np.array([2000, 2500])`定义了两个地层的密度和速度。
6. `depth = 50`定义了地层深度。
7. `Z = rho*v`计算了地层阻抗。
8. `L = (Z[1]-Z[0])/(Z[1]+Z[0])`计算了两层地层的反射系数。
9. `t1 = np.arange(0, 0.2, dt)`定义了合成地震记录的时间序列。
10. `L1 = np.zeros(np.size(t1))`初始化反射系数序列。
11. `t = depth*2/v[0]`计算了第一层地震波从表面到达第二层地层底部的时间。
12. `L1[int(np.round(t/dt))] = L`将第二层地层的反射系数赋值给相应的时间点。
13. `syn = np.convolve(L1, w0, 'same')`将反射系数序列和Ricker子波进行卷积,得到合成地震记录。
14. 通过Matplotlib库生成一个包含三个子图的图像,分别显示Ricker子波、反射系数和合成地震记录。
from scipy import signal import numpy as np import matplotlib.pyplot as plt plt.rcParams["font.family"] = 'Arial Unicode MS' original_sig = np.loadtxt("resources/unbalanced.txt") original_sig -= np.mean(original_sig) N = len(original_sig) pi = np.pi f2_jw = np.fft.fft(original_sig) f2_jw = np.fft.fftshift(f2_jw) jw_list = [complex(0, 1) * 2 * pi / N * item for item in np.linspace(-N/2, N/2, N, endpoint=False)] f1_jw = [] for i, (item1, item2) in enumerate(zip(f2_jw, jw_list)): if abs(item2) != 0: f1_jw.append(item1/item2) else: f1_jw.append(complex(0, 0)) f1_jw = np.array(f1_jw) * 1000 # m到mm的量纲转换 f1_jw = np.fft.ifftshift(f1_jw) vel_sig = np.fft.ifft(f1_jw).real fs = 8192 dt = 1/fs vel_sig *= dt # 实际采样频率为8192而非1,因此积分结果要乘以dt t_axis = [i * dt for i in range(len(original_sig))] result = signal.detrend(vel_sig) plt.figure(figsize=(12, 3)) plt.subplot(121) plt.plot(t_axis, vel_sig, label="频域积分计算得到的速度信号") plt.legend(loc="upper right") plt.subplot(122) plt.plot(t_axis, result, label="频域积分后去趋势得到的速度信号") plt.legend(loc="upper right") plt.show()将这段代码使用C语言进行编写,原始样本长度为512,为实数,在进行FFT处理之前,原始样本设置为复数,虚部全部设置为0
以下是使用C语言编写的代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define PI 3.14159265358979323846
void fft(double complex *x, int n) {
if (n == 1) return;
double complex xe[n/2], xo[n/2];
for (int i = 0; i < n/2; ++i) {
xe[i] = x[2*i];
xo[i] = x[2*i+1];
}
fft(xe, n/2);
fft(xo, n/2);
for (int i = 0; i < n/2; ++i) {
double complex t = cexp(-I * PI * i / (n/2)) * xo[i];
x[i] = xe[i] + t;
x[i+n/2] = xe[i] - t;
}
}
int main() {
double original_sig[512];
FILE *fp;
fp = fopen("resources/unbalanced.txt", "r");
for (int i = 0; i < 512; ++i) {
fscanf(fp, "%lf", &original_sig[i]);
original_sig[i] -= 0.5; // 去均值
}
fclose(fp);
double complex x[512];
for (int i = 0; i < 512; ++i) {
x[i] = CMPLX(original_sig[i], 0); // 设置虚部为0
}
fft(x, 512);
double jw_list[512];
for (int i = 0; i < 512; ++i) {
jw_list[i] = 2 * PI / 512 * (i - 256);
}
double complex f1_jw[512];
for (int i = 0; i < 512; ++i) {
if (jw_list[i] != 0) {
f1_jw[i] = x[i] / jw_list[i];
} else {
f1_jw[i] = 0;
}
}
for (int i = 0; i < 512; ++i) {
f1_jw[i] *= 1000; // m到mm的量纲转换
}
fft(f1_jw, 512);
double vel_sig[512];
for (int i = 0; i < 512; ++i) {
vel_sig[i] = creal(f1_jw[i]) / 512; // 实部除以样本长度,得到速度信号
}
double t_axis[512];
for (int i = 0; i < 512; ++i) {
t_axis[i] = i * 1.0 / 8192; // 采样频率为8192
}
double result[512];
for (int i = 0; i < 512; ++i) {
result[i] = vel_sig[i];
}
double sum = 0, average;
for (int i = 0; i < 512; ++i) {
sum += result[i];
}
average = sum / 512;
for (int i = 0; i < 512; ++i) {
result[i] -= average; // 去趋势
}
FILE *fpw;
fpw = fopen("vel_sig.txt", "w");
for (int i = 0; i < 512; ++i) {
fprintf(fpw, "%lf\n", vel_sig[i]);
}
fclose(fpw);
fpw = fopen("result.txt", "w");
for (int i = 0; i < 512; ++i) {
fprintf(fpw, "%lf\n", result[i]);
}
fclose(fpw);
return 0;
}
```
这段代码与Python代码实现的步骤基本相同,使用了C语言中的复数类型 `double complex` 和一些基本的数学函数。代码中还包含了读写文件的功能,将速度信号和去趋势后的速度信号分别写入了 `vel_sig.txt` 和 `result.txt` 文件中。
阅读全文