import pandas as pd # 读取数据到DataFrame df = pd.read_csv('data.csv') # 查找重复的id duplicates = df[df.duplicated('id', keep=False)]这段代码没有反馈,我不知道有没有重复的id
时间: 2024-03-14 07:44:52 浏览: 59
这段代码的作用是读取名为"data.csv"的文件到一个DataFrame对象中,然后查找"df"中所有重复的"id"列,最后将其保存到"duplicates"中。如果没有任何输出,则说明没有重复的"id"。
如果您想要查看是否有重复的"id",可以尝试使用以下代码:
```python
import pandas as pd
# 读取数据到DataFrame
df = pd.read_csv('data.csv')
# 查找重复的id
duplicates = df[df.duplicated('id', keep=False)]
# 打印重复的id
if not duplicates.empty:
print("以下是重复的id:")
print(duplicates['id'])
else:
print("没有重复的id")
```
这样,如果有重复的"id",就会输出它们的值。
相关问题
import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码
代码中的错误是使用了未定义的模块和类。需要先安装相应的模块并导入相应的类。
以下是修改后的代码:
```python
import pandas as pd
import numpy as np
from scipy.sparse import coo_matrix
from sklearn.model_selection import train_test_split
from Recommenders.SVDRecommender import SVDRecommender # 导入SVDRecommender类
triplet_dataset_sub_song_merged = pd.read_csv('triplet_dataset_sub_song_merged.csv') # 读取数据
triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index()
triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True)
triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df)
triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count']
small_set = triplet_dataset_sub_song_merged[['user','song','fractional_play_count']]
user_codes = small_set.user.drop_duplicates().reset_index()
song_codes = small_set.song.drop_duplicates().reset_index()
user_codes.rename(columns={'index':'user_index'}, inplace=True)
song_codes.rename(columns={'index':'song_index'}, inplace=True)
song_codes['so_index_value'] = list(song_codes.index)
user_codes['us_index_value'] = list(user_codes.index)
small_set = pd.merge(small_set,song_codes,how='left')
small_set = pd.merge(small_set,user_codes,how='left')
mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']]
data_array = mat_candidate.fractional_play_count.values
row_array = mat_candidate.us_index_value.values
col_array = mat_candidate.so_index_value.values
data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float)
K=50
urm = data_sparse
MAX_PID = urm.shape[1]
MAX_UID = urm.shape[0]
recommender = SVDRecommender(K) # 创建SVD推荐器
U, S, Vt = recommender.fit(urm) # 训练推荐器
uTest = [1,6,7,8,23]
uTest_recommended_items = recommender.recommend(uTest, urm, 10)
# 输出推荐结果
recommendations = pd.DataFrame(columns=['user','song', 'score','rank'])
for user in uTest:
rank = 1
for song_index in uTest_recommended_items[user, 0:10]:
song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0]
recommendations = recommendations.append({'user': user, 'song': song['song'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True)
rank += 1
display(recommendations)
```
6. 从原始数据集中生成一个新数据表df_loc并显示前5行。该表有以下属性:station id(它的数据来自start station id和end station id)、station name(它的数据来自start station name和end station name)、station latitude(它的数据来自start station latitude和end station latitude)、station longitude(它的数据来自start station longitude和end station longitude)(提示:转换后会出现重复记录,可用dataframe.drop_duplicates(subset=‘列1’) 表示删除dataframe中列1中有重复的值所在的行并保留重复值中第一行)
好的,以下是回答:
首先要将原始数据集中的start station id、end station id、start station name、end station name、start station latitude、end station latitude、start station longitude、end station longitude这几个属性获取出来。然后,将start station id和end station id合并成一个新的station id属性,将start station name和end station name合并成一个新的station name属性,将start station latitude和end station latitude合并成一个新的station latitude属性,将start station longitude和end station longitude合并成一个新的station longitude属性。接着,按照station id排序去除重复记录并保留第一行,得到新的数据表df_loc。
具体的实现方法如下:
```
# 读取原始数据集
import pandas as pd
df = pd.read_csv("citibike_tripdata.csv")
# 获取需要的属性
start_id = df["start station id"]
end_id = df["end station id"]
start_name = df["start station name"]
end_name = df["end station name"]
start_lat = df["start station latitude"]
end_lat = df["end station latitude"]
start_lon = df["start station longitude"]
end_lon = df["end station longitude"]
# 合并属性
station_id = pd.concat([start_id, end_id], ignore_index=True)
station_name = pd.concat([start_name, end_name], ignore_index=True)
station_lat = pd.concat([start_lat, end_lat], ignore_index=True)
station_lon = pd.concat([start_lon, end_lon], ignore_index=True)
# 将属性合并成一个新的数据表
df_loc = pd.DataFrame({"station id": station_id, "station name": station_name,
"station latitude": station_lat, "station longitude": station_lon})
# 按照station id排序并去重
df_loc = df_loc.sort_values(by=["station id"])
df_loc = df_loc.drop_duplicates(subset=["station id"], keep="first")
# 显示前5行
print(df_loc.head(5))
```
阅读全文