9个特征的csv文件怎么使用tranformer模型进行三分类python代码
时间: 2024-02-07 11:02:14 浏览: 77
要使用 transformer 模型对具有 9 个特征的 CSV 文件进行三分类,你可以按照以下步骤编写 Python 代码:
1. 导入所需的库和模块:
```python
import pandas as pd
import torch
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
```
2. 加载数据:
```python
# 读取 CSV 文件
data = pd.read_csv('your_file.csv')
# 获取特征列和标签列
features = data['your_features_column'].values
labels = data['your_labels_column'].values
# 将标签转换为整数(0、1、2)
labels = labels.astype(int)
```
3. 数据预处理:
```python
# 划分训练集和测试集
train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)
# 初始化 tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
# 编码文本数据
train_encodings = tokenizer(list(train_features), truncation=True, padding=True)
test_encodings = tokenizer(list(test_features), truncation=True, padding=True)
# 转换为 PyTorch tensors
train_dataset = torch.utils.data.TensorDataset(torch.tensor(train_encodings['input_ids']),
torch.tensor(train_encodings['attention_mask']),
torch.tensor(train_labels))
test_dataset = torch.utils.data.TensorDataset(torch.tensor(test_encodings['input_ids']),
torch.tensor(test_encodings['attention_mask']),
torch.tensor(test_labels))
```
4. 初始化并训练模型:
```python
# 初始化分类模型
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=3)
# 设置训练参数
optimizer = AdamW(model.parameters(), lr=1e-5)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
# 训练模型
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
model.train()
for epoch in range(10):
for batch in train_loader:
input_ids, attention_mask, labels = batch
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
# 保存模型
model.save_pretrained('saved_model')
```
5. 测试模型:
```python
# 加载保存的模型
model = BertForSequenceClassification.from_pretrained('saved_model')
# 预测测试集
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)
model.eval()
predictions = []
with torch.no_grad():
for batch in test_loader:
input_ids, attention_mask, labels = batch
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits
_, preds = torch.max(logits, dim=1)
predictions.extend(preds.tolist())
# 输出分类报告
target_names = ['class_0', 'class_1', 'class_2']
print(classification_report(test_labels, predictions, target_names=target_names))
```
请确保替换代码中的以下内容:
- 'your_file.csv':你的 CSV 文件路径
- 'your_features_column':包含特征的列名称
- 'your_labels_column':包含标签的列名称
还需要根据你的具体需求调整模型参数、训练参数和保存模型的路径。这个示例使用了预训练的 BERT 模型,你可以根据需要选择其他预训练模型。
阅读全文