节约里程法matlab
时间: 2023-07-13 10:17:15 浏览: 213
节约里程法(Mileage-Based Method)是一种用于车辆行驶里程的估算方法。在MATLAB中,可以通过以下步骤来实现节约里程法:
1. 定义车辆的初始里程数和加油时加入的油量。
2. 根据车辆的油耗率计算车辆在加油前所行驶的里程数。
3. 如果车辆在加油前所行驶的里程数小于等于加入的油量所能行驶的里程数,则将车辆的初始里程数更新为加油后的里程数。
4. 如果车辆在加油前所行驶的里程数大于加入的油量所能行驶的里程数,则根据车辆的油耗率计算出车辆在加满油后能行驶的里程数,并将车辆的初始里程数更新为加满油后的里程数减去车辆在加油前所行驶的里程数。
5. 重复步骤2到步骤4,直到车辆行驶结束。
通过该方法,可以比较准确地估算车辆的行驶里程数,从而更好地管理车辆的油耗和维护。
相关问题
节约里程法matlab代码
节约里程法是一种常用的路径规划算法。假设有n个城市,我们需要从其中的某一城市出发,经过其余n-1个城市,最后回到出发城市,使得经过的路径总长度最小。接下来我们简单介绍一下如何用Matlab实现节约里程法。
1. 定义距离矩阵
首先,我们需要定义n个城市之间的距离矩阵。我们可以用一个n*n的矩阵来表示,其中第i行第j列的元素表示从城市i到城市j的距离。
2. 初始化路径序列
我们可以先随机生成n个城市的路径序列,作为算法的初始路径。
3. 计算节约值
对于每一对相邻的城市i和j,我们需要计算其节约值,即将路径中的i和j省略,而用其他路径连接i和j的长度差值。
4. 选择最小节约值
在每次选择时,我们需要按照节约值的大小对相邻城市对进行排序,然后选取节约值最小的相邻城市对进行连接。
5. 更新路径序列
每次选取相邻城市对后,我们需要更新路径序列,并重新计算节约值。
6. 循环迭代
以上操作需要迭代循环n-2次,每次选取一对相邻城市进行连接。最后,将路径序列的首尾连接,构成一条完整的路径。
最后,我们给出一份参考代码供参考。你可以根据自己的情况进行修改和完善。
```Matlab
n = 10; % 城市数量
D = rand(n,n); % 距离矩阵
for i = 1:n
D(i,i) = 0;
end
P = randperm(n); % 初始路径
for i = 1:(n-2)
G = zeros(n,n);
for j = 1:(n-1)
for k = (j+1):n
if j == i
G(P(j),P(k)) = D(P(j),P(k));
elseif k == i+1
G(P(j),P(k)) = D(P(j),P(i+1));
else
G(P(j),P(k)) = D(P(j),P(k)) - D(P(j),P(i+1)) + D(P(i),P(k));
end
end
end
G = G + G';
[t,ind] = min(G(:));
[a,b] = ind2sub([n,n],ind);
P((i+1):(b-1)) = P(b:-1:(i+1));
end
P = [P,P(1)];
dis = 0;
for i = 1:n
dis = dis + D(P(i),P(i+1));
end
```
带时间窗的节约里程法matlab
以下是一个带时间窗的节约里程法的MATLAB代码示例:
```
function [bestRoute, minDist] = vrptw_savings(nodes, capacity, depotIndex, timeWindows)
% VRPTW_SAVINGS Solve the Vehicle Routing Problem with Time Windows using the Savings algorithm.
% nodes: matrix of size (N+1) x 3 where N is the number of customers and the first row is the depot
% each row represents a node with columns [x-coordinate, y-coordinate, demand]
% capacity: scalar representing the capacity of each vehicle
% depotIndex: scalar representing the index of the depot node in the nodes matrix
% timeWindows: matrix of size N x 2 representing the time windows for each customer node
% each row is [start time, end time]
% bestRoute: vector representing the best route found by the algorithm
% minDist: scalar representing the minimum distance of the best route
% Calculate the distance matrix
distanceMatrix = pdist2(nodes(:,1:2), nodes(:,1:2));
% Calculate the savings matrix
savingsMatrix = zeros(size(distanceMatrix));
for i = 2:length(nodes)
for j = i+1:length(nodes)
savingsMatrix(i,j) = distanceMatrix(i,depotIndex) + distanceMatrix(j,depotIndex) - distanceMatrix(i,j);
savingsMatrix(j,i) = savingsMatrix(i,j);
end
end
% Sort the savings matrix in descending order
[sortedSavings, indices] = sort(savingsMatrix(:),'descend');
% Initialize the routes matrix
routes = cell(length(nodes),1);
for i = 1:length(nodes)
routes{i} = i;
end
% Merge the routes using the savings algorithm
for i = 1:length(sortedSavings)
if sortedSavings(i) <= 0
break;
end
[node1, node2] = ind2sub(size(savingsMatrix), indices(i));
route1 = findRoute(routes, node1);
route2 = findRoute(routes, node2);
if length(route1) + length(route2) - 2 <= capacity && checkTimeWindows(route1, route2, timeWindows)
routes{route1(1)} = [node1, route1, node2, route2(route2~=node2)];
routes{route2(1)} = [];
end
end
% Remove empty routes
routes(cellfun(@isempty,routes)) = [];
% Calculate the distance of each route and find the best route
minDist = Inf;
bestRoute = [];
for i = 1:length(routes)
route = routes{i};
dist = 0;
for j = 2:length(route)
dist = dist + distanceMatrix(route(j-1),route(j));
end
if dist < minDist
minDist = dist;
bestRoute = route;
end
end
end
function route = findRoute(routes, node)
% FINDROUTE Find the route containing the given node.
for i = 1:length(routes)
if ismember(node, routes{i})
route = routes{i};
return;
end
end
end
function feasible = checkTimeWindows(route1, route2, timeWindows)
% CHECKTIMEWINDOWS Check if the time windows of the two routes are feasible.
time1 = sum(timeWindows(route1,1));
time2 = sum(timeWindows(route2,1));
if time1 + time2 > timeWindows(1,2)
feasible = false;
return;
end
time1 = max(timeWindows(route1,1));
time2 = max([timeWindows(route2,1), time1 + pdist2(nodes(route1(end),1:2), nodes(route2,1:2))]);
if time2 > timeWindows(route2(end),2)
feasible = false;
return;
end
feasible = true;
end
```
在这个示例中,我们首先计算了距离矩阵和节约矩阵,然后按照节约矩阵中的节约值进行排序。接下来,我们初始化每个节点为一个单独的路线,并使用节约算法逐步合并这些路线,直到无法再合并为止。最后,我们计算每个路线的距离,并找到最短的路线作为最优解。
需要注意的是,我们在路线合并过程中还对时间窗进行了检查,以确保生成的路线满足时间窗的要求。
阅读全文