将yolov5中普通卷积替换为acnet卷积模块,代码实现
时间: 2023-07-08 15:11:05 浏览: 257
卷积神经网络lenet-5的c++实现
4星 · 用户满意度95%
以下是将YOLOv5中普通卷积替换为ACNet卷积模块的示例代码:
1. 首先,需要在`models/common.py`文件中实现ACNet卷积模块:
```python
import torch
import torch.nn as nn
class ACConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
super(ACConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
a = torch.mean(torch.abs(x), dim=(2, 3), keepdim=True)
a = self.sigmoid(a)
x = x * a
return x
```
2. 然后,在`models/yolo.py`文件中,将普通卷积替换为ACNet卷积模块:
```python
from models.common import ACConv
class YOLOLayer(nn.Module):
# ...
def forward(self, x, img_size, augment=False, profile=False):
# ...
if self.training:
# ...
else:
# 替换普通卷积为ACNet卷积
x = ACConv(in_channels=self.out_channels[-1], out_channels=self.anchor_per_scale * (self.num_classes + 5),
kernel_size=1, stride=1, padding=0)(x)
# ...
```
注意,这里只是示例代码,实际上还需要对YOLOv5的其他部分进行相应的修改,以确保ACNet卷积模块的正确使用。
ACNet卷积模块的具体实现和使用方法可以参考ACNet论文,链接如下:https://arxiv.org/pdf/1908.03930.pdf
阅读全文