C#sigmoid函数
时间: 2024-08-14 09:00:35 浏览: 112
在C#中,Sigmoid函数是一种常用的激活函数,常用于神经网络中。它将输入值映射到0到1之间的一个连续区间,计算公式通常为:
\[ S(x) = \frac{1}{1 + e^{-x}} \]
这个函数的特点是对于负无穷小的输入接近0,对于正无穷小的输入接近1,中间部分则有一个平滑的增长。在C#中,你可以使用Math.NET Numerics这样的库来方便地计算Sigmoid函数,如果没有现成的函数,也可以自定义一个方法实现:
```csharp
using MathNet.Numerics.Distributions;
public static double Sigmoid(double x)
{
return 1 / (1 + Math.Exp(-x));
}
```
相关问题
c# 使用sigmod
C#使用sigmoid函数可以通过引入相应的库来实现。在引用中提到了一个sigmoid库,可以通过以下代码进行引用和使用:
```
var sigmoid = require('sigmoid');
double result = sigmoid(0.5);
```
此外,在引用中提到了一个名为Faster的库,它提供了一个FasterKV存储引擎,可以在内存或磁盘上存储键值对。在引用中提供了一些示例代码,展示了如何使用FasterKV存储引擎。如果需要在C#中使用FasterKV存储引擎,可以按照以下步骤进行:
1. 引入Faster库:
```
using FASTER.core;
```
2. 创建FasterKVSettings对象:
```
var fasterKvSetting = new FasterKVSettings<long, byte[]>(null); // 内存模式
var fasterKvSetting = new FasterKVSettings<long, byte[]>("./faster-query"); // 混合模式
```
3. 创建FasterKV对象:
```
var fasterKv = new FasterKV<long, byte[]>(fasterKvSetting);
```
4. 创建Session对象:
```
var session = fasterKv.For(new SimpleFunctions<long, byte[]>()).NewSession<SimpleFunctions<long, byte[]>>();
```
5. 使用Upsert方法写入数据:
```
var str = "yyds".ToByteArray(Encoding.UTF8);
session.Upsert(1024, str);
```
6. 使用Read方法读取数据:
```
var result = session.Read(1024);
Console.WriteLine($"{Encoding.UTF8.GetString(result.output)}");
```
C#实现RNN二进制加法
好的,我可以为你提供一个简单的 C# 实现 RNN 二进制加法的代码示例。在这个示例中,我们将使用 RNN 来学习如何将两个二进制数相加。
首先,我们需要导入以下命名空间:
```csharp
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
```
然后,我们定义一些常量和变量:
```csharp
const int INPUT_SIZE = 2;
const int HIDDEN_SIZE = 16;
const int OUTPUT_SIZE = 1;
const int ITERATIONS = 10000;
const double LEARNING_RATE = 0.1;
double[,] X = new double[,] { { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 } };
double[,] Y = new double[,] { { 0 }, { 1 }, { 1 }, { 0 } };
double[,] Wxh = new double[INPUT_SIZE, HIDDEN_SIZE];
double[,] Whh = new double[HIDDEN_SIZE, HIDDEN_SIZE];
double[,] Why = new double[HIDDEN_SIZE, OUTPUT_SIZE];
double[,] bh = new double[1, HIDDEN_SIZE];
double[,] by = new double[1, OUTPUT_SIZE];
double[,] h = new double[1, HIDDEN_SIZE];
double[,] y = new double[1, OUTPUT_SIZE];
```
接下来,我们定义一些函数来执行矩阵乘法和激活函数:
```csharp
static double[,] Dot(double[,] a, double[,] b)
{
int rows = a.GetLength(0);
int cols = b.GetLength(1);
double[,] c = new double[rows, cols];
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
double sum = 0.0;
for (int k = 0; k < a.GetLength(1); k++)
{
sum += a[i, k] * b[k, j];
}
c[i, j] = sum;
}
}
return c;
}
static double[,] Sigmoid(double[,] a)
{
int rows = a.GetLength(0);
int cols = a.GetLength(1);
double[,] b = new double[rows, cols];
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
b[i, j] = 1.0 / (1.0 + Math.Exp(-a[i, j]));
}
}
return b;
}
```
然后,我们初始化权重和偏差:
```csharp
Random rand = new Random();
for (int i = 0; i < INPUT_SIZE; i++)
{
for (int j = 0; j < HIDDEN_SIZE; j++)
{
Wxh[i, j] = rand.NextDouble() - 0.5;
}
}
for (int i = 0; i < HIDDEN_SIZE; i++)
{
for (int j = 0; j < HIDDEN_SIZE; j++)
{
Whh[i, j] = rand.NextDouble() - 0.5;
}
}
for (int i = 0; i < HIDDEN_SIZE; i++)
{
for (int j = 0; j < OUTPUT_SIZE; j++)
{
Why[i, j] = rand.NextDouble() - 0.5;
}
}
for (int i = 0; i < 1; i++)
{
for (int j = 0; j < HIDDEN_SIZE; j++)
{
bh[i, j] = rand.NextDouble() - 0.5;
}
}
for (int i = 0; i < 1; i++)
{
for (int j = 0; j < OUTPUT_SIZE; j++)
{
by[i, j] = rand.NextDouble() - 0.5;
}
}
```
现在,我们可以开始训练 RNN 模型。在每次迭代中,我们将输入两个二进制数并计算输出结果。然后,我们使用反向传播算法来更新权重和偏差:
```csharp
for (int iter = 0; iter < ITERATIONS; iter++)
{
double loss = 0.0;
for (int i = 0; i < X.GetLength(0); i++)
{
// forward pass
h = Sigmoid(Dot(X.GetRow(i), Wxh) + Dot(h, Whh) + bh);
y = Sigmoid(Dot(h, Why) + by);
// calculate loss
loss += Math.Pow(Y[i, 0] - y[0, 0], 2);
// backward pass
double[,] dy = new double[1, OUTPUT_SIZE];
dy[0, 0] = y[0, 0] - Y[i, 0];
double[,] dh = Dot(dy, Why.Transpose()) * h * (1 - h);
double[,] dWhy = Dot(h.Transpose(), dy);
double[,] dWxh = Dot(X.GetRow(i).Transpose(), dh);
double[,] dWhh = Dot(h.Transpose(), dh) + Dot(h.Transpose(), dh).Transpose();
double[,] dby = dy;
double[,] dbh = dh;
// update weights and biases
Why -= LEARNING_RATE * dWhy;
Wxh -= LEARNING_RATE * dWxh;
Whh -= LEARNING_RATE * dWhh;
by -= LEARNING_RATE * dby;
bh -= LEARNING_RATE * dbh;
}
loss /= X.GetLength(0);
if (iter % 1000 == 0)
{
Console.WriteLine($"Iteration: {iter}, Loss: {loss}");
}
}
```
最后,我们可以使用训练好的模型来计算两个二进制数的和:
```csharp
double[,] x1 = new double[,] { { 0, 0 } };
double[,] x2 = new double[,] { { 0, 1 } };
double[,] x3 = new double[,] { { 1, 0 } };
double[,] x4 = new double[,] { { 1, 1 } };
double[,] h1 = new double[1, HIDDEN_SIZE];
double[,] h2 = new double[1, HIDDEN_SIZE];
double[,] h3 = new double[1, HIDDEN_SIZE];
double[,] h4 = new double[1, HIDDEN_SIZE];
double[,] y1 = new double[1, OUTPUT_SIZE];
double[,] y2 = new double[1, OUTPUT_SIZE];
double[,] y3 = new double[1, OUTPUT_SIZE];
double[,] y4 = new double[1, OUTPUT_SIZE];
h1 = Sigmoid(Dot(x1, Wxh) + Dot(h1, Whh) + bh);
y1 = Sigmoid(Dot(h1, Why) + by);
h2 = Sigmoid(Dot(x2, Wxh) + Dot(h2, Whh) + bh);
y2 = Sigmoid(Dot(h2, Why) + by);
h3 = Sigmoid(Dot(x3, Wxh) + Dot(h3, Whh) + bh);
y3 = Sigmoid(Dot(h3, Why) + by);
h4 = Sigmoid(Dot(x4, Wxh) + Dot(h4, Whh) + bh);
y4 = Sigmoid(Dot(h4, Why) + by);
Console.WriteLine($"0 + 0 = {Math.Round(y1[0, 0])}");
Console.WriteLine($"0 + 1 = {Math.Round(y2[0, 0])}");
Console.WriteLine($"1 + 0 = {Math.Round(y3[0, 0])}");
Console.WriteLine($"1 + 1 = {Math.Round(y4[0, 0])}");
```
这个程序的输出应该是:
```
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0
```
这就是使用 RNN 实现二进制加法的简单示例。希望这可以帮助你理解 RNN 的工作原理。
阅读全文