tensorrt部署 c++
时间: 2023-09-24 18:09:00 浏览: 222
基于C++快速使用TensorRT来部署模型项目源码
4星 · 用户满意度95%
TensorRT是一个高性能深度学习推理优化器和运行时引擎。它可以加速和优化训练好的深度学习模型的推理过程。在TensorRT中部署C++代码可以实现对ResNet网络的部署。
为了部署ResNet网络,首先需要生成ResNet模型的ONNX文件。ONNX是一种开放的深度学习模型表示格式,它可以跨不同深度学习框架进行模型的转换和部署。
在生成ONNX文件后,可以使用TensorRT来生成推理引擎。推理引擎是TensorRT针对特定硬件平台和优化配置生成的可执行二进制文件,它可以直接用于推理任务。
在生成推理引擎后,可以使用推理引擎来进行图片分类的推理。通过加载推理引擎,并将输入数据传入推理引擎,即可获得模型的推理结果。
在进行TensorRT部署时,需要进行相应的环境配置。具体地,在Windows 10系统上完成TensorRT部署,需要安装CUDA和相关依赖库。CUDA是NVIDIA提供的并行计算平台和编程模型,用于加速深度学习计算。此外,还需要安装TensorRT的软件和依赖包。
总结起来,TensorRT部署ResNet网络的步骤包括:生成ResNet模型的ONNX文件,使用TensorRT生成推理引擎,配置相应的环境(包括安装CUDA和相关依赖库),最后利用推理引擎进行图片分类。
阅读全文