contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img_bgr = cv2.cvtColor(imm, cv2.COLOR_GRAY2BGR) # 绘制边缘 # imm = cv2.drawContours(img_bgr, contours, -1, (0, 0, 255), 1) # 遍历轮廓 rects = [] for contour in contours: rect = cv2.minAreaRect(contour) rects.append(rect) box = cv2.boxPoints(rect) box = np.int0(box)在此代码中box[][]两个括号里分别是什么
时间: 2024-04-01 19:34:52 浏览: 80
在这段代码中,`box` 也是一个包含矩形四个角点坐标的 numpy 数组。`boxPoints()` 函数接收一个旋转矩形,返回一个包含四个点坐标的数组。
`box` 数组的两个方括号分别代表行和列。每个方括号内的数字代表该元素在数组中的位置。例如,`box[0][0]` 表示数组的第一行第一列元素,即第一个点的 x 坐标,`box[1][2]` 表示数组的第二行第三列元素,即第二个点的 y 坐标。因为 `box` 是一个二维数组,所以需要使用两个方括号来进行索引。
相关问题
import cv2import numpy as np# 读取图像image = cv2.imread('工件图像.jpg')# 转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 使用二值化处理获取缺陷图像ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 使用形态学操作进行缺陷的去噪和填充kernel = np.ones((3,3), np.uint8)closing = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)# 获取缺陷轮廓contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)# 遍历每一个缺陷,提取几何特征并绘制位置for i in range(len(contours)): # 获取面积和周长 area = cv2.contourArea(contours[i]) perimeter = cv2.arcLength(contours[i], True) # 获取质心 moments = cv2.moments(contours[i]) cx = int(moments['m10'] / moments['m00']) cy = int(moments['m01'] / moments['m00']) # 绘制位置和特征 cv2.drawContours(image, [contours[i]], -1, (0, 255, 0), 2) cv2.circle(image,(cx,cy), 5, (0,0,255), -1) cv2.putText(image, "Area: {:.2f}".format(area), (cx+10, cy-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2) cv2.putText(image, "Perimeter: {:.2f}".format(perimeter), (cx+10, cy+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2)# 显示结果cv2.imshow('Defect Detection', image)cv2.waitKey(0)# 保存结果cv2.imwrite('Defect Detection.jpg', image)
这是Python中的两个库,cv2是OpenCV库,用于图像和视频处理,包括读取、写入、显示、处理、分析等。numpy是一个数学库,用于处理数字和数组。一般情况下,当我们读取图像时,使用cv2,而对图片进行处理时,使用numpy。
triangle = cv2.minEnclosingTriangle(max_contour) triangle = np.int0(triangle)报错:valueerror
这个错误可能是由于`cv2.minEnclosingTriangle()`函数返回值的数据类型不是整数类型,而`cv2.drawContours()`函数需要的轮廓数据类型是整数型的。
为了解决这个错误,我们需要将`cv2.minEnclosingTriangle()`函数返回的三角形数据类型转换为整数型。可以使用`np.int0()`函数将其转换为整数型。
以下是修改后的代码示例:
```python
import cv2
import numpy as np
# 读取图片
img = cv2.imread('example.jpg')
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化处理
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 找到最大轮廓
max_contour = max(contours, key=cv2.contourArea)
# 计算最小外接三角形
triangle = cv2.minEnclosingTriangle(max_contour)
triangle = np.int0(triangle)
# 绘制最小外接三角形
cv2.drawContours(img, [triangle], 0, (0, 0, 255), 2)
# 显示结果
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在此示例中,我们使用`np.int0()`函数将三角形数据类型转换为整数型。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)