C++里实现scipy里的curve_fit
时间: 2023-12-09 08:03:10 浏览: 488
曲线拟合软件curve fitting
3星 · 编辑精心推荐
在C++中实现Scipy中的curve_fit函数可以使用非线性最小二乘回归方法来拟合非线性函数。以下是一个简单的实现:
首先,需要定义一个函数去拟合,这个函数可以是任何非线性函数。比如,定义一个指数函数:
```c++
double func(double x, double a, double b, double c) {
return a*exp(-b*x) + c;
}
```
然后,创建一个vector去存储x和y的值:
```c++
std::vector<double> x_data;
std::vector<double> y_data;
```
将x和y的值分别加入到vector中:
```c++
x_data.push_back(x1);
y_data.push_back(y1);
x_data.push_back(x2);
y_data.push_back(y2);
//...
```
接下来,使用非线性最小二乘回归方法来拟合函数:
```c++
#include <gsl/gsl_multifit_nlin.h>
struct data {
size_t n;
double *x;
double *y;
};
int func_f(const gsl_vector *x, void *data, gsl_vector *f) {
size_t n = ((struct data *)data)->n;
double *x_data = ((struct data *)data)->x;
double *y_data = ((struct data *)data)->y;
double a = gsl_vector_get(x, 0);
double b = gsl_vector_get(x, 1);
double c = gsl_vector_get(x, 2);
for (size_t i = 0; i < n; i++) {
double t = x_data[i];
double yi = a * exp(-b * t) + c;
gsl_vector_set(f, i, yi - y_data[i]);
}
return GSL_SUCCESS;
}
int main() {
const gsl_multifit_fdfsolver_type *T;
gsl_multifit_fdfsolver *s;
int status;
size_t i, iter = 0;
const size_t n = x_data.size();
const size_t p = 3;
gsl_matrix *covar = gsl_matrix_alloc(p, p);
double x_init[3] = {1.0, 1.0, 1.0};
gsl_vector_view x = gsl_vector_view_array(x_init, p);
gsl_multifit_function_fdf f;
struct data d = {n, x_data.data(), y_data.data()};
f.f = &func_f;
f.df = NULL;
f.fdf = NULL;
f.n = n;
f.p = p;
f.params = &d;
T = gsl_multifit_fdfsolver_lmsder;
s = gsl_multifit_fdfsolver_alloc(T, n, p);
gsl_multifit_fdfsolver_set(s, &f, &x.vector);
do {
iter++;
status = gsl_multifit_fdfsolver_iterate(s);
if (status)
break;
status = gsl_multifit_test_delta(s->dx, s->x, 1e-4, 1e-4);
} while (status == GSL_CONTINUE && iter < 500);
gsl_multifit_covar(s->J, 0.0, covar);
gsl_matrix_fprintf(stdout, covar, "%g");
gsl_multifit_fdfsolver_free(s);
gsl_matrix_free(covar);
return status;
}
```
这里使用了GSL库中的非线性最小二乘回归方法。首先,需要定义一个结构体去存储x和y的值:
```c++
struct data {
size_t n;
double *x;
double *y;
};
```
然后,定义一个函数去计算残差,即拟合函数的值与实际值之间的差距:
```c++
int func_f(const gsl_vector *x, void *data, gsl_vector *f) {
size_t n = ((struct data *)data)->n;
double *x_data = ((struct data *)data)->x;
double *y_data = ((struct data *)data)->y;
double a = gsl_vector_get(x, 0);
double b = gsl_vector_get(x, 1);
double c = gsl_vector_get(x, 2);
for (size_t i = 0; i < n; i++) {
double t = x_data[i];
double yi = a * exp(-b * t) + c;
gsl_vector_set(f, i, yi - y_data[i]);
}
return GSL_SUCCESS;
}
```
然后,初始化拟合函数的参数,使用gsl_multifit_fdfsolver_type中的lmsder方法进行拟合:
```c++
const gsl_multifit_fdfsolver_type *T;
gsl_multifit_fdfsolver *s;
int status;
size_t i, iter = 0;
const size_t n = x_data.size();
const size_t p = 3;
gsl_matrix *covar = gsl_matrix_alloc(p, p);
double x_init[3] = {1.0, 1.0, 1.0};
gsl_vector_view x = gsl_vector_view_array(x_init, p);
gsl_multifit_function_fdf f;
struct data d = {n, x_data.data(), y_data.data()};
f.f = &func_f;
f.df = NULL;
f.fdf = NULL;
f.n = n;
f.p = p;
f.params = &d;
T = gsl_multifit_fdfsolver_lmsder;
s = gsl_multifit_fdfsolver_alloc(T, n, p);
gsl_multifit_fdfsolver_set(s, &f, &x.vector);
```
最后,使用gsl_multifit_test_delta函数判断迭代是否结束,并输出协方差矩阵:
```c++
do {
iter++;
status = gsl_multifit_fdfsolver_iterate(s);
if (status)
break;
status = gsl_multifit_test_delta(s->dx, s->x, 1e-4, 1e-4);
} while (status == GSL_CONTINUE && iter < 500);
gsl_multifit_covar(s->J, 0.0, covar);
gsl_matrix_fprintf(stdout, covar, "%g");
gsl_multifit_fdfsolver_free(s);
gsl_matrix_free(covar);
return status;
```
这个函数的返回值即为拟合的状态,若为0则表示拟合成功。
以上就是一个简单的C++实现Scipy中的curve_fit函数的方法。
阅读全文