deeplabv3代码
时间: 2023-08-30 19:10:33 浏览: 180
DeepLabv3是一个语义分割模型,它主要包括两个部分:骨干网络和ASPP模块。骨干网络通常采用ResNet或Xception,ASPP模块可以有效地捕捉多尺度信息。以下是DeepLabv3的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, DepthwiseConv2D, BatchNormalization, Activation, Add, Dropout, UpSampling2D, concatenate
from tensorflow.keras.models import Model
def ASPP(inputs, output_stride):
# ASPP模块
if output_stride == 16:
dilations = [1, 6, 12, 18]
elif output_stride == 8:
dilations = [1, 12, 24, 36]
# 分支1:全局池化
b0 = tf.keras.layers.GlobalAveragePooling2D()(inputs)
b0 = tf.keras.layers.Reshape((1, 1, inputs.shape[3]))(b0)
b0 = tf.keras.layers.Conv2D(256, (1, 1), padding='same')(b0)
b0 = tf.keras.layers.BatchNormalization()(b0)
b0 = tf.keras.layers.ReLU()(b0)
b0 = tf.keras.layers.UpSampling2D(size=(inputs.shape[1] // 4, inputs.shape[2] // 4), interpolation='bilinear')(b0)
# 分支2:1x1卷积
b1 = tf.keras.layers.Conv2D(256, (1, 1), padding='same')(inputs)
b1 = tf.keras.layers.BatchNormalization()(b1)
b1 = tf.keras.layers.ReLU()(b1)
# 分支3:空洞卷积
b2 = tf.keras.layers.Conv2D(256, (3, 3), dilation_rate=dilations[0], padding='same')(inputs)
b2 = tf.keras.layers.BatchNormalization()(b2)
b2 = tf.keras.layers.ReLU()(b2)
# 分支4:空洞卷积
b3 = tf.keras.layers.Conv2D(256, (3, 3), dilation_rate=dilations[1], padding='same')(inputs)
b3 = tf.keras.layers.BatchNormalization()(b3)
b3 = tf.keras.layers.ReLU()(b3)
# 分支5:空洞卷积
b4 = tf.keras.layers.Conv2D(256, (3, 3), dilation_rate=dilations[2], padding='same')(inputs)
b4 = tf.keras.layers.BatchNormalization()(b4)
b4 = tf.keras.layers.ReLU()(b4)
# 分支6:空洞卷积
b5 = tf.keras.layers.Conv2D(256, (3, 3), dilation_rate=dilations[3], padding='same')(inputs)
b5 = tf.keras.layers.BatchNormalization()(b5)
b5 = tf.keras.layers.ReLU()(b5)
# 将分支输出连接在一起
out = tf.keras.layers.concatenate([b0, b1, b2, b3, b4, b5], axis=3)
out = tf.keras.layers.Conv2D(256, (1, 1), padding='same')(out)
out = tf.keras.layers.BatchNormalization()(out)
out = tf.keras.layers.ReLU()(out)
out = tf.keras.layers.Dropout(0.5)(out)
return out
def DeepLabv3(input_shape=(512, 512, 3), output_stride=16, num_classes=21):
# 骨干网络
inputs = Input(shape=input_shape)
resnet = tf.keras.applications.ResNet50(include_top=False, weights='imagenet', input_tensor=inputs)
# ASPP模块
x = ASPP(resnet.output, output_stride)
# 1x1卷积
x = tf.keras.layers.Conv2D(256, (1, 1), padding='same')(resnet.output)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
# 上采样
x = UpSampling2D(size=(4, 4), interpolation='bilinear')(x)
x = concatenate([x, x], axis=3)
# 分类器
x = Conv2D(256, (3, 3), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Conv2D(num_classes, (1, 1), padding='same')(x)
x = UpSampling2D(size=(4, 4), interpolation='bilinear')(x)
# 输出
outputs = Activation('softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
return model
```
阅读全文