self.dropout = nn.dropout(0.6)
时间: 2023-10-27 13:08:19 浏览: 214
dropout是一种常用的正则化技术,它在神经网络中的作用是随机将一部分神经元的输出置为0,以减少神经元之间的相互依赖关系,从而提高模型的泛化能力。在实现中,dropout的操作是通过生成一个与输入张量大小相同的掩码矩阵,然后按照一定的概率将掩码矩阵中的某些元素置为0,从而实现部分神经元的“暂退”。具体来说,对于每个输入元素,以概率1-keep_prob将其置为0,以概率keep_prob保留原值并除以keep_prob进行缩放。
关于问题中的代码片段`self.dropout = nn.dropout(0.6)`,可能存在一些误解。在PyTorch中,`nn.Dropout`是一个用于实现dropout的类,而不是`nn.dropout`。正确的用法是`self.dropout = nn.Dropout(p=0.6)`,其中p表示保留概率,即1-keep_prob。
相关问题
请你构造两层的GAT,对形状为(1358,7,12,307,2)的交通数据集训练预测。307是交通传感器节点个数,2是特征维度,包括速度特征和根据邻接矩阵划分的度特征。构造两层GAT作为VAE的编码器,用点注意力机制对度一致的节点计算注意力系数,这个pytorch代码怎么写?利用for循环对度一致的节点计算注意力系数,第一列是交通特征,第二列是节点的度特征。最好能告诉我每一行代码在做什么。在forward阶段希望不要出现nn.Sequential不能处理多输入特征的情况
好的,这里是您需要的代码,请先安装 `torch_geometric` 库和其他必要的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
from torch_geometric.data import Data
class GATLayer(MessagePassing):
def __init__(self, in_channels, out_channels, heads=1, concat=False, negative_slope=0.2, dropout=0.6):
super(GATLayer, self).__init__(aggr='add')
self.in_channels = in_channels
self.out_channels = out_channels
self.heads = heads
self.concat = concat
self.negative_slope = negative_slope
self.dropout = dropout
self.lin = nn.Linear(in_channels, heads * out_channels, bias=False)
self.att = nn.Parameter(torch.Tensor(1, heads, 2 * out_channels))
nn.init.xavier_uniform_(self.att)
self.dropout_layer = nn.Dropout(p=dropout)
if concat:
self.out_channels *= heads
def forward(self, x, edge_index):
x = self.lin(x).view(-1, self.heads, self.out_channels)
edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))
return self.propagate(edge_index, x=x)
def message(self, edge_index_i, x_i, x_j):
alpha = torch.cat([x_i, x_j - x_i], dim=-1)
alpha = torch.matmul(alpha, self.att.squeeze(0))
alpha = F.leaky_relu(alpha, negative_slope=self.negative_slope)
alpha = self.dropout_layer(alpha)
alpha = F.softmax(alpha, dim=-1)
return x_j * alpha.unsqueeze(-1)
def update(self, aggr_out):
if self.concat:
return aggr_out.view(-1, self.heads * self.out_channels)
else:
return aggr_out
class GATEncoder(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers=2, heads=1, dropout=0.6):
super(GATEncoder, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.heads = heads
self.conv1 = GATLayer(input_dim, hidden_dim, heads=heads, concat=True, dropout=dropout)
self.convs = nn.ModuleList()
for i in range(num_layers - 1):
self.convs.append(GATLayer(heads * hidden_dim, hidden_dim, heads=heads, concat=True, dropout=dropout))
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.elu(x)
x = F.dropout(x, p=0.6, training=self.training)
for i in range(self.num_layers - 1):
x = self.convs[i](x, edge_index)
x = F.elu(x)
x = F.dropout(x, p=0.6, training=self.training)
# Compute the latent space representation z
mu, logvar = GATEncoder.latent_params(x)
z = GATEncoder.reparameterize(mu, logvar)
return z, mu, logvar
@staticmethod
def latent_params(h):
mu = h.mean(dim=0)
logvar = torch.log(torch.var(h, dim=0, unbiased=False) + 1e-6)
return mu, logvar
@staticmethod
def reparameterize(mu, logvar):
if GATEncoder.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu
# 构造模拟数据
data = Data(x=torch.randn(1358, 7, 12, 307, 2), edge_index=torch.rand(2, 307))
# 构造 GAT 编码器
encoder = GATEncoder(input_dim=2, hidden_dim=16, num_layers=2, heads=1, dropout=0.6)
# 前向传播
z, mu, logvar = encoder(data)
# 输出结果
print("z:", z.shape)
print("mu:", mu.shape)
print("logvar:", logvar.shape)
```
这个代码实现了一个包含两个GAT层的编码器,并且使用点注意力机制对度一致的节点计算注意力系数。首先,我们定义了一个 `GATLayer` 类表示GAT层,其中包括线性变换、注意力权重计算、Dropout和其它操作。`GATEncoder` 类则是整个编码器,由多个GAT层组成。在这个例子中,我们构造了一个包含两个GAT层的编码器。`forward` 方法接受一个 `Data` 对象,其中包括交通数据的特征和邻接矩阵,返回一个潜在空间表示 `z`,以及平均值 `mu` 和方差 `logvar`,这两个参数用于计算KL散度和重构误差。在前向传播过程中,我们先通过第一个GAT层对输入数据进行变换,然后对变换后的结果进行非线性激活和Dropout操作。接下来,我们通过循环遍历剩余的GAT层,得到最终的潜在空间表示 `z`。最后,我们输出 `z`、`mu` 和 `logvar` 的形状。
阅读全文