np.fft.fftshift后坐标轴怎么变化
时间: 2023-08-07 16:58:34 浏览: 260
`np.fft.fftshift`函数用于将频率域的数据进行中心化,即将零频率移到中心位置。
对于一维的数据,`np.fft.fftshift`函数将数据的前一半移动到后一半,同时将后一半移动到前一半。这样做的目的是将零频率放在数据的中心位置。
对于二维的数据,`np.fft.fftshift`函数将数据的四个象限进行循环移动,使得零频率位于数据的中心位置。具体来说,函数将原始数据的第一象限移动到第三象限,将第二象限移动到第四象限,将第三象限移动到第一象限,将第四象限移动到第二象限。
下面是一个简单的示例来说明 `np.fft.fftshift` 函数的作用:
```python
import numpy as np
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
shifted_data = np.fft.fftshift(data)
print("Original data:")
print(data)
print("Shifted data:")
print(shifted_data)
```
输出结果:
```
Original data:
[[1 2 3]
[4 5 6]
[7 8 9]]
Shifted data:
[[9 7 8]
[3 1 2]
[6 4 5]]
```
可以看到,原始数据被移动了位置,使得中心元素变为9。这在频域分析中常用于可视化频谱数据。
相关问题
data1=np.load('/home/lenovo/桌面/work/paper-zhizi/paper/npy/cp10-bx133fs.npy') data2=np.load('/home/lenovo/桌面/work/paper-zhizi/paper/npy/zhizi_cp10-bx133fs.npy') # 进行全矩阵FFT变换 nx=1333 ny=711 kx=np.fft.fftshift(np.fft.fftfreq(nx,30e-6/nx))*2*np.pi ky=np.fft.fftshift(np.fft.fftfreq(ny,16e-6/ny))*2*np.pi KX, KY = np.meshgrid(kx, ky) k = np.sqrt(KX**2 + KY**2) extent=[min(kx),max(kx),min(ky),max(ky)] print(type(KX)) print((KX.shape)) #kx, ky = np.meshgrid(kx, ky) mid1=np.fft.fft2(data1) mid1=np.fft.fftshift(mid1)所得的k空间坐标轴范围是多少
根据你提供的代码,可以看出 `KX` 和 `KY` 是通过 `np.meshgrid` 函数生成的二维数组。因此,`KX` 和 `KY` 的形状与输入的 `kx` 和 `ky` 的形状相同,即 `(ny, nx)`。
在这种情况下,根据你的代码,`kx` 和 `ky` 是通过调用 `np.fft.fftshift` 和 `np.fft.fftfreq` 函数生成的,其范围是从最小值到最大值。因此,`KX` 和 `KY` 的范围也将是一样的。
你可以通过打印 `extent` 变量来查看 `kx` 和 `ky` 的范围,即 `extent=[min(kx), max(kx), min(ky), max(ky)]`。这将显示 `kx` 和 `ky` 的最小值和最大值。
请注意,由于你的数据尺寸较大,生成 `KX` 和 `KY` 的过程可能会耗费一些时间和内存。确保你的计算资源足够支持这些操作。
f = np.fft.fft2(img) fshift = np.fft.fftshift(f)什么意思
这两行代码是进行二维傅里叶变换的核心代码,下面我来简单解释一下。
在图像处理中,傅里叶变换被广泛应用于频域滤波、图像增强、图像压缩等方面。傅里叶变换可以将一个时域信号(如图像)转换为其频域表示,用于分析其频率成分。具体来说,对于一个二维图像 $f(x,y)$,其傅里叶变换为 $F(u,v)$,公式如下:
$$F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(\frac{ux}{M}+\frac{vy}{N})}$$
其中,$M$ 和 $N$ 分别是图像的宽和高,$u$ 和 $v$ 分别是频率域的横、纵坐标。
具体到代码实现中,`np.fft.fft2()` 函数可以对二维图像进行傅里叶变换,其返回值是一个复数数组,表示图像的频域表示。而 `np.fft.fftshift()` 函数则是将频域中的直流分量移到频谱的中心,以便于后续的滤波操作。这两个函数的作用可以用下面的代码来展示:
```python
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读取图像
img = cv2.imread('image.jpg',0)
# 进行傅里叶变换
f = np.fft.fft2(img)
# 频域中直流分量的位置在左上角,移动到中心位置
fshift = np.fft.fftshift(f)
# 显示结果
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(np.log(1+np.abs(fshift)), cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
```
运行上述代码,可以得到如下的结果:
![image](https://img-blog.csdn.net/20180419180038797)
左图是原始图像,右图是对应的频谱图,可以看到频谱中心是亮的,表示该图像中低频分量比较多,即图像中存在较多的低频信息。
阅读全文