gray_fft = np.fft.fft2(gray) gray_fftshift = np.fft.fftshift(gray_fft) dst_fftshift = np.zeros_like(gray_fftshift) M, N = np.meshgrid(np.arange(-cols // 2, cols // 2), np.arange(-rows // 2, rows // 2)) D = np.sqrt(M ** 2 + N ** 2) Z = (rh - r1) * (1 - np.exp(-c * (D ** 2 / d0 ** 2))) + r1 dst_fftshift = Z * gray_fftshift dst_fftshift = (h - l) * dst_fftshift + l dst_ifftshift = np.fft.ifftshift(dst_fftshift) dst_ifft = np.fft.ifft2(dst_ifftshift) dst = np.real(dst_ifft) dst = np.uint8(np.clip(dst, 0, 255)) return dst
时间: 2024-04-26 08:24:24 浏览: 119
FFT.rar_C FFT_fft_fft.c
在这个函数中,首先使用np.fft.fft2函数将输入图像进行二维傅里叶变换,然后使用np.fft.fftshift函数将变换结果进行中心化处理。接下来,创建一个与输入图像大小相同的全零数组dst_fftshift,并计算出输入图像的行数和列数。
函数接着使用np.meshgrid函数生成网格坐标,并根据频率域滤波器的公式计算出增益系数Z。然后,将增益系数Z乘以中心化的傅里叶变换结果gray_fftshift,得到增益后的频率域图像dst_fftshift。
接着,将增益后的频率域图像dst_fftshift乘以(h - l),再加上l,得到最终的频率域图像。然后,使用np.fft.ifftshift函数将频率域图像逆中心化,并使用np.fft.ifft2函数将其转换回空间域。最后,将输出图像进行限幅处理,转换为8位无符号整数类型,然后返回输出图像。
阅读全文